Product Citations: 7

Human induced pluripotent stem cells derived neutrophils display strong anti-microbial potencies.

In Cell Regeneration (London, England) on 21 March 2025 by Hu, X., Kang, B., et al.

Neutrophils are essential innate immune cells with unusual anti-microbial properties while dysfunctions of neutrophils lead to severe health problems such as lethal infections. Generation of neutrophils from human induced pluripotent stem cells (hiPSCs) is highly promising to produce off-the-shelf neutrophils for transfusion therapies. However, the anti-microbial potencies of hiPSCs derived neutrophils (iNEUs) remain less documented. Here, we develop a scalable approach to generate iNEUs in a chemical defined condition. iNEUs display typical neutrophil characters in terms of phagocytosis, migration, formation of neutrophil extracellular traps (NETs), etc. Importantly, iNEUs display a strong killing potency against various bacteria such as K.pneumoniae, P.aeruginosa, E.coli and S.aureus. Moreover, transfusions of iNEUs in mice with neutrophil dysfunction largely enhance their survival in lethal infection of different bacteria. Together, our data show that hiPSCs derived neutrophils hold strong anti-microbial potencies to protect severe infections under neutrophil dysfunction conditions.
© 2025. The Author(s).

  • FC/FACS
  • Stem Cells and Developmental Biology

Cell-specific targeting of extracellular vesicles through engineering the glycocalyx.

In Journal of Extracellular Vesicles on 1 December 2022 by Zheng, W., He, R., et al.

Extracellular vesicles (EVs) are promising carriers for the delivery of a variety of chemical and biological drugs. However, their efficacy is limited by the lack of cellular specificity. Available methods to improve the tissue specificity of EVs predominantly rely on surface display of proteins and peptides, largely overlooking the dense glycocalyx that constitutes the outermost layer of EVs. In the present study, we report a reconfigurable glycoengineering strategy that can endogenously display glycans of interest on EV surface. Briefly, EV producer cells are genetically engineered to co-express a glycosylation domain (GD) inserted into the large extracellular loop of CD63 (a well-studied EV scaffold protein) and fucosyltransferase VII (FUT7) or IX (FUT9), so that the engineered EVs display the glycan of interest. Through this strategy, we showcase surface display of two types of glycan ligands, sialyl Lewis X (sLeX) and Lewis X, on EVs and achieve high specificity towards activated endothelial cells and dendritic cells, respectively. Moreover, the endothelial cell-targeting properties of sLeX-EVs were combined with the intrinsic therapeutic effects of mesenchymal stem cells (MSCs), leading to enhanced attenuation of endothelial damage. In summary, this study presents a reconfigurable glycoengineering strategy to produce EVs with strong cellular specificity and highlights the glycocalyx as an exploitable trait for engineering EVs.
© 2022 The Authors. Journal of Extracellular Vesicles published by Wiley Periodicals, LLC on behalf of the International Society for Extracellular Vesicles.

Lymphatic vessels form a critical component in the regulation of human health and disease. While their functional significance is increasingly being recognized, the comprehensive heterogeneity of lymphatics remains uncharacterized. Here, we report the profiling of 33,000 lymphatic endothelial cells (LECs) in human lymph nodes (LNs) by single-cell RNA sequencing. Unbiased clustering revealed six major types of human LECs. LECs lining the subcapsular sinus (SCS) of LNs abundantly expressed neutrophil chemoattractants, whereas LECs lining the medullary sinus (MS) expressed a C-type lectin CD209. Binding of a carbohydrate Lewis X (CD15) to CD209 mediated neutrophil binding to the MS. The neutrophil-selective homing by MS LECs may retain neutrophils in the LN medulla and allow lymph-borne pathogens to clear, preventing their spread through LNs in humans. Our study provides a comprehensive characterization of LEC heterogeneity and unveils a previously undefined role for medullary LECs in human immunity.
Copyright © 2019 Elsevier Inc. All rights reserved.

  • Immunology and Microbiology

Chronic myeloid leukemia (CML) is a clonal hematopoietic stem cell disorder. It is characterized by the presence of the Philadelphia (Ph) chromosome, t(9;22)(q34.1;q11.2), which carries the BCR-ABL1 fusion gene. Tyrosine kinase inhibitors (TKIs) have markedly changed the treatment approach of CML and have become the first-line agents for almost all CML patients. However, certain patients experience resistance to these medications, which occurs through several mechanisms, including the accumulation of TKI-resistant chromosomal abnormalities. The present study reports a case of a 27-year-old Saudi male with CML receiving TKI treatment, who presented with precursor B-cell lymphoblastic crisis demonstrating the presence of the novel combined chromosomal abnormalities; non-Ph der(22), i(9) and der(20), carrying the BCR-ABL1 fusion gene. This case report adds to the literature on novel TKI-resistance-conferring chromosomal abnormalities and links them to precursor B-cell lymphoblastic crisis.

  • FC/FACS
  • Homo sapiens (Human)
  • Cancer Research
  • Genetics
  • Immunology and Microbiology

The fusion oncoprotein CBFβ-SMMHC, expressed in leukemia cases with chromosome 16 inversion, drives leukemia development and maintenance by altering the activity of the transcription factor RUNX1. Here, we demonstrate that CBFβ-SMMHC maintains cell viability by neutralizing RUNX1-mediated repression of MYC expression. Upon pharmacologic inhibition of the CBFβ-SMMHC/RUNX1 interaction, RUNX1 shows increased binding at three MYC distal enhancers, where it represses MYC expression by mediating the replacement of the SWI/SNF complex component BRG1 with the polycomb-repressive complex component RING1B, leading to apoptosis. Combining the CBFβ-SMMHC inhibitor with the BET inhibitor JQ1 eliminates inv(16) leukemia in human cells and a mouse model. Enhancer-interaction analysis indicated that the three enhancers are physically connected with the MYC promoter, and genome-editing analysis demonstrated that they are functionally implicated in deregulation of MYC expression. This study reveals a mechanism whereby CBFβ-SMMHC drives leukemia maintenance and suggests that inhibitors targeting chromatin activity may prove effective in inv(16) leukemia therapy.
Published by Elsevier Inc.

  • Cancer Research
View this product on CiteAb