Product Citations: 3

The developmental origin of blood-forming hematopoietic stem cells (HSCs) is a longstanding question. Here, our non-invasive genetic lineage tracing in mouse embryos pinpoints that artery endothelial cells generate HSCs. Arteries are transiently competent to generate HSCs for 2.5 days (∼E8.5-E11) but subsequently cease, delimiting a narrow time frame for HSC formation in vivo. Guided by the arterial origins of blood, we efficiently and rapidly differentiate human pluripotent stem cells (hPSCs) into posterior primitive streak, lateral mesoderm, artery endothelium, hemogenic endothelium, and >90% pure hematopoietic progenitors within 10 days. hPSC-derived hematopoietic progenitors generate T, B, NK, erythroid, and myeloid cells in vitro and, critically, express hallmark HSC transcription factors HLF and HOXA5-HOXA10, which were previously challenging to upregulate. We differentiated hPSCs into highly enriched HLF+ HOXA+ hematopoietic progenitors with near-stoichiometric efficiency by blocking formation of unwanted lineages at each differentiation step. hPSC-derived HLF+ HOXA+ hematopoietic progenitors could avail both basic research and cellular therapies.
Copyright © 2024 The Author(s). Published by Elsevier Inc. All rights reserved.

  • FC/FACS
  • Homo sapiens (Human)
  • Stem Cells and Developmental Biology

Progressive genetic modifications of porcine cardiac xenografts extend survival to 9 months.

In Xenotransplantation on 1 May 2022 by Mohiuddin, M. M., Goerlich, C. E., et al.

We report orthotopic (life-supporting) survival of genetically engineered porcine cardiac xenografts (with six gene modifications) for almost 9 months in baboon recipients. This work builds on our previously reported heterotopic cardiac xenograft (three gene modifications) survival up to 945 days with an anti-CD40 monoclonal antibody-based immunosuppression. In this current study, life-supporting xenografts containing multiple human complement regulatory, thromboregulatory, and anti-inflammatory proteins, in addition to growth hormone receptor knockout (KO) and carbohydrate antigen KOs, were transplanted in the baboons. Selective "multi-gene" xenografts demonstrate survival greater than 8 months without the requirement of adjunctive medications and without evidence of abnormal xenograft thickness or rejection. These data demonstrate that selective "multi-gene" modifications improve cardiac xenograft survival significantly and may be foundational for paving the way to bridge transplantation in humans.
© 2022 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  • FC/FACS
  • Sus scrofa domesticus (Domestic pig)
  • Papio anubis (Olive Baboon)
  • Cardiovascular biology
  • Genetics
  • Veterinary Research

Progressive Genetic Modifications with Growth Hormone Receptor Knockout Extends Cardiac Xenograft Survival to 9 Months

Preprint on Research Square on 12 April 2021 by Mohiuddin, M., Goerlich, C. E., et al.

We report orthotopic (life-supporting) survival of genetically engineered porcine cardiac xenografts (with 3-9 progressive gene modifications) for almost 9 months in baboon recipients. This work builds on our previously reported heterotopic cardiac xenograft (3 gene modifications) survival up to 945 days with an anti-CD40 monoclonal antibody-based immunosuppression. In this current study, life-supporting xenografts containing multiple human complement regulatory, thromboregulatory, and anti-inflammatory proteins, in addition to growth hormone receptor knockout (KO) and carbohydrate antigen KOs, were transplanted. Selective "multi-gene" xenografts demonstrate survival greater than 8 months without the use of adjunctive medications and without evidence of abnormal xenograft thickness or rejection. These data demonstrate that selective “multi-gene" modifications improve cardiac xenograft survival significantly and may be foundational for paving the way to bridge transplantation in humans.

  • Cardiovascular biology
  • Endocrinology and Physiology
  • Genetics
View this product on CiteAb