Product Citations: 7

Polyclonal regeneration of mouse bone marrow endothelial cells after irradiative conditioning.

In Cell Reports on 26 November 2024 by Skulimowska, I., Morys, J., et al.

Bone marrow endothelial cells (BM-ECs) are the essential components of the BM niche and support the function of hematopoietic stem cells (HSCs). However, conditioning for HSC transplantation causes damage to the recipients' BM-ECs and may lead to transplantation-related morbidity. Here, we investigated the cellular and clonal mechanisms of BM-EC regeneration after irradiative conditioning. Using single-cell RNA sequencing, imaging, and flow cytometry, we revealed how the heterogeneous pool of BM-ECs changes during regeneration from irradiation stress. Next, we developed a single-cell in vitro clonogenic assay and demonstrated that all EC fractions hold a high potential to reenter the cell cycle and form vessel-like structures. Finally, we used Rainbow mice and a machine-learning-based model to show that the regeneration of BM-ECs after irradiation is mostly polyclonal and driven by the broad fraction of BM-ECs; however, the cell output among clones varies at later stages of regeneration.
Copyright © 2024 The Author(s). Published by Elsevier Inc. All rights reserved.

  • Mus musculus (House mouse)

The transcription factor CCAAT enhancer binding protein alpha (C/EBPα) is a master regulator of myelopoiesis. CEBPA encodes a long (p42) and a truncated (p30) protein isoform from a single mRNA. Mutations that abnormally enhance expression of p30 are associated with acute myelogenous leukemia (AML). We show by mutational analysis that three highly conserved arginine residues in the p30 C/EBPα N-terminus, previously found to be methylated, are involved in myeloid lineage commitment, progenitor proliferation, and differentiation. The conservative amino acid substitution with lysine that retains the amino acid side chain charge enhanced progenitor proliferation, while a non-conservative substitution with uncharged side chains (alanine, leucine) impaired proliferation and enhanced granulopoiesis. Analysis of protein interactions suggested that arginine methylation of p30 C/EBPα differentially determines interactions with SWI/SNF and MLL complexes. Pharmacological targeting of p30 C/EBPα arginine methylation may have clinical relevance in myeloproliferative and inflammatory diseases, in neutropenia, and in leukemic stem cells.
© 2024 The Author(s).

  • Mus musculus (House mouse)

Arginine methylation of the p30 C/EBPα oncoprotein regulates progenitor proliferation and myeloid differentiation

Preprint on BioRxiv : the Preprint Server for Biology on 30 March 2024 by Nguyen, L. T., Zimmermann, K., et al.

ABSTRACT The transcription factor CCAAT enhancer binding protein alpha (C/EBPα) is a master regulator of myelopoiesis. CEBPA encodes a long (p42) and a truncated (p30) protein isoform from a single mRNA. Mutations that abnormally enhance expression of p30 are associated with acute myelogenous leukemia (AML). We show by mutational analysis that three highly conserved arginine residues (R140,147,154) located at the p30 C/EBPα N-terminus, previously found to be methylated, are involved in myeloid lineage commitment, progenitor proliferation, and differentiation. Replacement with lysine that retains the amino acid side chain charge enhanced progenitor proliferation, while uncharged side chains (alanine or leucine) impaired proliferation and enhanced granulopoietic differentiation. Analysis of protein-protein interactions (PPI) suggested that arginine methylation of p30 C/EBPα differentially determines its capacity to interact with SWI/SNF and MLL complexes. Pharmacological targeting of p30 C/EBPα arginine methylation may have clinical relevance in myeloproliferative and inflammatory diseases, in neutropenia, and in leukemic stem cells.

  • Mus musculus (House mouse)

The interrelationships between neuronal viability, synaptic integrity, and microglial responses remain in infancy. In dealing with the question, we induced a stretch injury to evaluate the mechanical effects of trauma on rat primary cortical neurons and BV2 microglial cells in a transwell culture system. The viability of primary neurons and BV2 cells was determined by MTT. Synaptic integrity was evaluated by determining the expression of beta-secretase 1 (BACE1), amyloid-beta (Aβ), microtubule-associated protein 2 (MAP2), and synaptophysin (vehicle protein). Both CD16/32-positive (CD16/32+) and CD206-positive (CD206+) microglia cells were detected by immunofluorescence staining. The phagocytic ability of the BV2 cells was determined using pHrodo E. coli BioParticles conjugates and flow cytometry. We found that stretch injury BV2 cells caused reduced viability and synaptic abnormalities characterized by Aβ accumulation and reductions of BACE1, MAP2, and synaptophysin in primary neurons. Intact BV2 cells exhibited normal phagocytic ability and were predominantly CD206+ microglia cells, whereas the injured BV2 cells exhibited reduced phagocytic ability and were predominantly CD16/32+ microglial cells. Like a stretch injury, the injured BV2 cells can cause both reduced viability and synaptic abnormalities in primary neurons; intact BV2 cells, when cocultured with primary neurons, can protect against the stretch-injured-induced reduced viability and synaptic abnormalities in primary neurons. We conclude that CD206+ and CD16/32+ BV-2 cells can produce neuroprotective and cytotoxic effects on primary cortical neurons.
© 2022. The Author(s).

  • Mus musculus (House mouse)
  • Neuroscience

Urolithin A (URA) is an intestinal microbiota metabolic product from ellagitannin-containing foods with multiple biological activities. However, its role in autoimmune diseases is largely unknown. Here, for first time, we demonstrate the therapeutic effect of URA in an experimental autoimmune encephalomyelitis (EAE) animal model.
Therapeutic effect was evaluated via an active and passive EAE animal model in vivo. The function of URA on bone marrow-derived dendritic cells (BM-DCs), T cells, and microglia were tested in vitro.
Oral URA (25 mg/kg/d) suppressed disease progression at prevention, induction, and effector phases of preclinical EAE. Histological evaluation showed that significantly fewer inflammatory cells, decreased demyelination, lower numbers of M1-type microglia and activated DCs, as well as reduced infiltrating Th1/Th17 cells were present in the central nervous system (CNS) of the URA-treated group. URA treatment at 25 μM inhibited the activation of BM-DCs in vitro, restrained Th17 cell differentiation in T cell polarization conditions, and in a DC-CD4+ T cell co-culture system. Moreover, we confirmed URA inhibited pathogenicity of Th17 cells in adoptive EAE. Mechanism of URA action was directly targeting Aryl Hydrocarbon Receptor (AhR) and modulating the signaling pathways.
Collectively, our study offers new evidence that URA, as a human microbial metabolite, is valuable to use as a prospective therapeutic candidate for autoimmune diseases.
Copyright © 2021 The Authors. Published by Elsevier B.V. All rights reserved.

  • FC/FACS
  • Mus musculus (House mouse)
  • Immunology and Microbiology
View this product on CiteAb