Product Citations: 9

Role of CXCR3 signaling in response to anti-PD-1 therapy.

In EBioMedicine on 1 October 2019 by Han, X., Wang, Y., et al.

Tumor mutations and tumor microenvironment are associated with resistance to cancer immunotherapies. However, peripheral T cell in effective anti-programmed death 1 (PD-1) antibody treatment is poorly understood.
Mass spectrometry and conventional flow cytometry were used to investigate peripheral blood cells isolated from patients. Furthermore, melanoma mouse model was performed to assess the role of CXCR3 signaling in anti-PD-1 antibody treatment.
We revealed a marked increase in the percentage of CXCR3+ T cells in the blood of cancer patients after the first pembrolizumab infusion. This percentage decreased after the second infusion in responsive patients, whereas a sustained high percentage of CXCR3+ T cells was observed in patients with progressive disease. A low percentage of CXCR3+ T cells presented in patients with stable disease or a partial response was confirmed by conventional flow cytometry. Intriguingly, blockade of CXCR3 signaling exacerbated tumor growth in mice. Intratumoral injection with recombinant CXCL9/10 plus intraperitoneal injection of anti-PD1 antibody inhibited the tumor growth in mice.
The dynamic changes in CXCR3+ T cells in blood may be a prognostic factor in anti-PD-1 immunotherapy, and promotion of CXCR3-mediated signaling may be beneficial to the anti-PD-1 therapy. FUND: This work was supported by the National Natural Science Foundation of China (Nos. 81722047, 81871944, 81670553, 81874317, 81572389, 81730100) and Jiangsu province key medical talents (Nos. ZDRCA2016026), The "Deng Feng" Distinguished Scholars Program, National Science & Technology Major Project "Key New Drug Creation and Manufacturing Program", China (Number: 2018ZX09201002), and the Fundamental Research Funds for the Central Universities (020814380117).
Copyright © 2019 The Authors. Published by Elsevier B.V. All rights reserved.

  • FC/FACS
  • Homo sapiens (Human)

Chronic myeloid leukemia (CML) is a clonal hematopoietic stem cell disorder. It is characterized by the presence of the Philadelphia (Ph) chromosome, t(9;22)(q34.1;q11.2), which carries the BCR-ABL1 fusion gene. Tyrosine kinase inhibitors (TKIs) have markedly changed the treatment approach of CML and have become the first-line agents for almost all CML patients. However, certain patients experience resistance to these medications, which occurs through several mechanisms, including the accumulation of TKI-resistant chromosomal abnormalities. The present study reports a case of a 27-year-old Saudi male with CML receiving TKI treatment, who presented with precursor B-cell lymphoblastic crisis demonstrating the presence of the novel combined chromosomal abnormalities; non-Ph der(22), i(9) and der(20), carrying the BCR-ABL1 fusion gene. This case report adds to the literature on novel TKI-resistance-conferring chromosomal abnormalities and links them to precursor B-cell lymphoblastic crisis.

  • FC/FACS
  • Homo sapiens (Human)
  • Cancer Research
  • Genetics
  • Immunology and Microbiology

Gene expression profiles associated with cigarette smoking and moist snuff consumption.

In BMC Genomics on 14 February 2017 by Arimilli, S., Madahian, B., et al.

Among the different tobacco products that are available on the US market, cigarette smoking is shown to be the most harmful and the effects of cigarette smoking have been well studied. US epidemiological studies indicate that non-combustible tobacco products are less harmful than smoking and yet very limited biological and mechanistic information is available on the effects of these alternative tobacco products. For the first time, we characterized gene expression profiling in PBMCs from moist snuff consumers (MSC), compared with that from consumers of cigarettes (SMK) and non-tobacco consumers (NTC).
Microarray analysis identified 100 differentially expressed genes (DEGs) between the SMK and NTC groups and 46 DEGs between SMK and MSC groups. However, we found no significant differences in gene expression between MSC and NTC. Both hierarchical clustering and principle component analysis revealed that MSC and NTC expression profiles were more similar than to SMK. Random forest classification identified a subset of DEGs which predicted SMK from either NTC or MSC with high accuracy (AUC 0.98).
PMBC gene expression profiles of NTC and MSC are similar to each other, while SMK exhibit distinct profiles with alterations in immune related pathways. In addition to discovering several biomarkers, these studies support further understanding of the biological effects of different tobacco products.
ClinicalTrials.gov. Identifier: NCT01923402 . Date of Registration: August 14, 2013. Study was retrospectively registered.

Inhibition of IRAK1/4 sensitizes T cell acute lymphoblastic leukemia to chemotherapies.

In The Journal of Clinical Investigation on 2 March 2015 by Li, Z., Younger, K., et al.

Signaling via the MyD88/IRAK pathway in T cells is indispensable for cell survival; however, it is not known whether this pathway functions in the progression of T acute lymphoblastic leukemia (T-ALL). Here, we determined that compared with thymic and peripheral T cells, T-ALL cells from patients have elevated levels of IRAK1 and IRAK4 mRNA as well as increased total and phosphorylated protein. Targeted inhibition of IRAK1 and IRAK4, either with shRNA or with a pharmacological IRAK1/4 inhibitor, dramatically impeded proliferation of T-ALL cells isolated from patients and T-ALL cells in a murine leukemia model; however, IRAK1/4 inhibition had little effect on cell death. We screened several hundred FDA-approved compounds and identified a set of drugs that had enhanced cytotoxic activity when combined with IRAK inhibition. Administration of an IRAK1/4 inhibitor or IRAK knockdown in combination with either ABT-737 or vincristine markedly reduced leukemia burden in mice and prolonged survival. IRAK1/4 signaling activated the E3 ubiquitin ligase TRAF6, increasing K63-linked ubiquitination and enhancing stability of the antiapoptotic protein MCL1; therefore, IRAK inhibition reduced MCL1 stability and sensitized T-ALL to combination therapy. These studies demonstrate that IRAK1/4 signaling promotes T-ALL progression through stabilization of MCL1 and suggest that impeding this pathway has potential as a therapeutic strategy to enhance chemotherapeutic efficacy.

  • FC/FACS
  • Mus musculus (House mouse)
  • Cancer Research
  • Immunology and Microbiology

Type 2 diabetes is often complicated by diabetic foot syndrome (DFS). We analyzed the circulating stem cells, growth factor and anti-oxidant gene expression profiles in type 2 diabetes patients without or with different forms of DFS.
Healthy volunteers (n = 13) and type 2 diabetes patients: (i) without DFS (n = 10); or with (ii) Charcot osteoneuropathy (n = 10); (iii) non-infected (n = 17); (iv) infected (n = 11); and (v) healed ulceration were examined (n = 12). Peripheral blood endothelial progenitor cells (EPC), mesenchymal stem cells (MSC), hematopoietic stem cells (HSC) and very small embryonic-like (VSEL) cells were phenotyped using flow cytometry. Plasma cytokine concentrations and gene expressions in blood cells were measured by Luminex and quantitative real-time polymerase chain reaction assays, respectively.
Patients with non-complicated type 2 diabetes showed reduced HMOX1 expression, accompanied by HMOX2 upregulation, and had less circulating EPC, MSC or HSC than healthy subjects. In contrast, VSEL cells were elevated in the type 2 diabetes group. However, subjects with DFS, even with healed ulceration, had fewer VSEL cells, more CD45-CD29(+)CD90(+)MSC, and upregulated HMOX1 when compared with the type 2 diabetes group. Patients with Charcot osteopathy had lowered plasma fibroblast growth factor-2. Elevated plasma tumor necrosis factor-α and decreased catalase expression was found in all diabetic patients.
Patients with type 2 diabetes and different forms of DFS have an altered number of circulating stem cells. Type 2 diabetes might also be associated with a changed plasma growth factor and anti-oxidant gene expression profile. Altogether, these factors could contribute to the pathogenesis of different forms of DFS.

View this product on CiteAb