Product Citations: 8

Hyperandrogenic environment regulates the function of ovarian granulosa cells by modulating macrophage polarization in PCOS.

In American Journal of Reproductive Immunology (New York, N.Y. : 1989) on 1 May 2024 by Chen, X., Hong, L., et al.

Polycystic ovary syndrome (PCOS) is a common endocrine-metabolic disorder characterized by oligo-anovulation, hyperandrogenism, and polycystic ovaries, with hyperandrogenism being the most prominent feature of PCOS patients. However, whether excessive androgens also exist in the ovarian microenvironment of patients with PCOS, and their modulatory role on ovarian immune homeostasis and ovarian function, is not clear.
Follicular fluid samples from patients participating in their first in vitro fertilization/intracytoplasmic sperm injection (IVF/ICSI) treatment were collected. Androgen concentration of follicular fluid was assayed by chemiluminescence, and the macrophage M1:M2 ratio was detected by flow cytometry. In an in vitro model, we examined the regulatory effects of different concentrations of androgen on macrophage differentiation and glucose metabolism levels using qRT-PCR, Simple Western and multi-factor flow cytometry assay. In a co-culture model, we assessed the effect of a hyperandrogenic environment in the presence or absence of macrophages on the function of granulosa cells using qRT-PCR, Simple Western, EdU assay, cell cycle assay, and multi-factor flow cytometry assay.
The results showed that a significantly higher androgen level and M1:M2 ratio in the follicular fluid of PCOS patients with hyperandrogenism. The hyperandrogenic environment promoted the expression of pro-inflammatory and glycolysis-related molecules and inhibited the expression of anti-inflammatory and oxidative phosphorylation-related molecules in macrophages. In the presence of macrophages, a hyperandrogenic environment significantly downregulated the function of granulosa cells.
There is a hyperandrogenic microenvironment in the ovary of PCOS patients with hyperandrogenism. Hyperandrogenic microenvironment can promote the activation of ovarian macrophages to M1, which may be associated with the reprogramming of macrophage glucose metabolism. The increased secretion of pro-inflammatory cytokines by macrophages in the hyperandrogenic microenvironment would impair the normal function of granulosa cells and interfere with normal ovarian follicle growth and development.
© 2024 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  • Immunology and Microbiology

Engagement of CD99 Activates Distinct Programs in Ewing Sarcoma and Macrophages.

In Cancer Immunology Research on 2 February 2024 by Manara, M. C., Manferdini, C., et al.

Ewing sarcoma (EWS) is the second most common pediatric bone tumor. The EWS tumor microenvironment is largely recognized as immune-cold, with macrophages being the most abundant immune cells and their presence associated with worse patient prognosis. Expression of CD99 is a hallmark of EWS cells, and its targeting induces inhibition of EWS tumor growth through a poorly understood mechanism. In this study, we analyzed CD99 expression and functions on macrophages and investigated whether the concomitant targeting of CD99 on both tumor and macrophages could explain the inhibitory effect of this approach against EWS. Targeting CD99 on EWS cells downregulated expression of the "don't eat-me" CD47 molecule but increased levels of the "eat-me" phosphatidyl serine and calreticulin molecules on the outer leaflet of the tumor cell membrane, triggering phagocytosis and digestion of EWS cells by macrophages. In addition, CD99 ligation induced reprogramming of undifferentiated M0 macrophages and M2-like macrophages toward the inflammatory M1-like phenotype. These events resulted in the inhibition of EWS tumor growth. Thus, this study reveals what we believe to be a previously unrecognized function of CD99, which engenders a virtuous circle that delivers intrinsic cell death signals to EWS cells, favors tumor cell phagocytosis by macrophages, and promotes the expression of various molecules and cytokines, which are pro-inflammatory and usually associated with tumor regression. This raises the possibility that CD99 may be involved in boosting the antitumor activity of macrophages.
©2023 The Authors; Published by the American Association for Cancer Research.

Concentrated growth factor regulates the macrophage-mediated immune response.

In Regenerative Biomaterials on 1 October 2021 by Luo, H., Liu, W., et al.

Concentrated growth factor (CGF) is a promising regenerative material that serves as a scaffold and adjunct growth factor for tissue engineering. The host immune response, particularly macrophage activity, plays a critical role in injury repair and tissue regeneration. However, the biological effect of CGF on the immune response is not clear. To enrich the theoretical groundwork for clinical application, the present study examined the immunoregulatory role of CGF in macrophage functional activities in vitro. The CGF scaffold appeared as a dense fibrin network with multiple embedded leukocytes and platelets, and it was biocompatible with macrophages. Concentrated bioactive factors in the CGF extract enhanced THP-1 monocyte recruitment and promoted the maturation of suspended monocytes into adherent macrophages. CGF extract also promoted THP-1 macrophage polarization toward the M2 phenotype with upregulated CD163 expression, as detected by cell morphology and surface marker expression. A cytokine antibody array showed that CGF extract exerted a regulatory effect on macrophage functional activities by reducing secretion of the inflammatory factor interleukin-1β while inducing expression of the chemokine regulated on activation, normal T cell expressed and secreted. Mechanistically, the AKT signaling pathway was activated, and an AKT inhibitor partially suppressed the immunomodulatory effect of CGF. Our findings reveal that CGF induces a favorable immune response mediated by macrophages, which represents a promising strategy for functional tissue regeneration.
© The Author(s) 2021. Published by Oxford University Press.

  • FC/FACS
  • Homo sapiens (Human)
  • Immunology and Microbiology

Despite disappointing outcomes from immuno-monotherapy, studies reported that NSCLC patients with EGFR mutation may possibly benefit from combined immunotherapy. Whether the response to prior EGFR-TKI has association with the outcomes of subsequent immunotherapy remains unclear.
Advanced NSCLC patients with resistance to EGFR-TKIs and received ICI treatment from January 2016 to June 2019 were retrospectively analyzed. Single cell sequencing and flow cytometry were conducted to explore the difference of cell components in tumor microenvironments (TME). A 1:3 matched case-control study was conducted to compare the clinical effects of combined immunotherapy with standard chemotherapy as second-line treatment.
Fifty-eight patients treated with anti-PD-1/PD-L1 based immunotherapy behind EGFR-TKI treatment were enrolled. Correlation analysis showed TKI-PFS had a significantly negative association with corresponding IO-PFS (r = -0.35, p = 0.006). TKI-PFS cutoff 10 months had the most significant predictive function for posterior immunotherapy and was validated to be an independent predictor by uni- and multivariate analyses. Kaplan-Meier analysis showed that patients with TKI-PFS less than 10 months had significantly prolonged IO-PFS and higher ORR than those with long (median PFS, 15.1 vs 3.8 months; HR, 0.26, p = 0.0002; ORR, 31.8 versus 10%, p = 0.04). Single cell RNA-seq revealed that the cell components were varied among patients after treatment with EGFR-TKI. Patients with short TKI-PFS demonstrated a relatively higher proportion of CD8 effector cells and lower ratio of M2 like macrophage to M1 like macrophages, which was validated by flow cytometry. Case-control study demonstrated that combined immunotherapy achieved significantly longer PFS (HR, 0.51, 95% CI: 0.31-0.85, p = 0.02), longer OS (HR, 0.48, 95% CI: 0.26-0.89, p = 0.05) and higher ORR (33.3 vs 10.0%, p = 0.02) than traditional chemotherapy for patients with short TKI-PFS.
Patients with short TKI-PFS conferred better response to immunotherapy than those with long. The status of TME were different among those two populations. Combined ICI treatment could promisingly be a better choice than classical chemotherapy in second-line setting for patients with short TKI-PFS and no T790M mutation. Underlying mechanisms need to be further explored.
Copyright © 2021 Liu, Wu, Li, Zhao, Jia, Jia, Han, Qiao, Li, Yu, Zhou, Xiong, Chen, Fan, Ren and Zhou.

  • FC/FACS
  • Homo sapiens (Human)
  • Immunology and Microbiology

Repetitive intermittent hyperglycemia (RIH) is an independent risk factor for complications associated with type-2 diabetes (T2D). Glucose fluctuations commonly occur in T2D patients with poor glycemic control or following intensive therapy. Reducing blood glucose as well as glucose fluctuations is critical to the control of T2D and its macro-/microvascular complications. The interferon regulatory factor (IRF)-5 located downstream of the nutrient sensor toll-like receptor (TLR)-4, is emerging as a key metabolic regulator. It remains unclear how glucose fluctuations may alter the IRF5/TLR4 expression and inflammatory responses in monocytes/macrophages. To investigate this, first, we determined IRF5 gene expression by real-time qRT-PCR in the white adipose tissue samples from 39 T2D and 48 nondiabetic individuals. Next, we cultured THP-1 macrophages in hypo- and hyperglycemic conditions and compared, at the protein and transcription levels, the expressions of IRF5, TLR4, and M1/M2 polarization profile and inflammatory markers against control (normoglycemia). Protein expression was assessed using flow cytometry, ELISA, Western blotting, and/or confocal microscopy. IRF5 silencing was achieved by small interfering RNA (siRNA) transfection. The data show that adipose IRF5 gene expression was higher in T2D than nondiabetic counterparts (P = 0.006), which correlated with glycated hemoglobin (HbA1c) (r = 0.47/P < 0.001), homeostatic model assessment of insulin resistance (HOMA-IR) (r = 0.23/P = 0.03), tumor necrosis factor (TNF)-α (r = 0.56/P < 0.0001), interleukin (IL)-1β (r = 0.40/P = 0.0009), and C-C motif chemokine receptor (CCR)-2 (r = 0.49/P < 0.001) expression. IRF5 expression in macrophages was induced/upregulated (P < 0.05) by hypoglycemia (3 mM/L), persistent hyperglycemia (15 mM/L-25 mM/L), and RIH/glucose fluctuations (3-15 mM/L) as compared to normoglycemia (5 mM/L). RIH/glucose fluctuations also induced M1 polarization and an inflammatory profile (CD11c, IL-1β, TNF-α, IL-6, and monocyte chemoattractant protein (MCP)-1) in macrophages. RIH/glucose fluctuations also drove the expression of matrix metalloproteinase (MMP)-9 (P < 0.001), which is a known marker for cardiovascular complication in T2D patients. Notably, all these changes were counteracted by IRF5 silencing in macrophages. In conclusion, RIH/glucose fluctuations promote the M1 polarization and inflammatory responses in macrophages via the mechanism involving TLR4-IRF5 pathway, which may have significance for metabolic inflammation.

  • FC/FACS
  • Homo sapiens (Human)
  • Cell Biology
  • Immunology and Microbiology
View this product on CiteAb