Product Citations: 11

2 images found

Current replacement procedures for stenosis or occluded arteries using prosthetic grafts have serious limitations in clinical applications, particularly, endothelialization of the luminal surface is a long-standing unresolved problem.
We produced a cell-based hybrid vascular graft using a bioink engulfing adipose-derived mesenchymal stromal cells (ADSCs) and a 3D bioprinting process lining the ADSCs on the luminal surface of GORE-Tex grafts. The hybrid graft was implanted as an interposition conduit to replace a 3-cm-long segment of the infrarenal abdominal aorta in Rhesus monkeys.
Complete endothelium layer and smooth muscle layer were fully developed within 21 days post-implantation, along with normalized collagen deposition and crosslinking in the regenerated vasculature in all monkeys. The regenerated blood vessels showed normal functionality for the longest observation of more than 1650 days. The same procedure was also conducted in miniature pigs for the interposition replacement of a 10-cm-long right iliac artery and showed the same long-term effective and safe outcome.
This cell-based vascular graft is ready to undergo clinical trials for human patients.
© 2024. The Author(s).

  • Veterinary Research

LFA-1 and kindlin-3 enable the collaborative transport of SLP-76 microclusters by myosin and dynein motors.

In Journal of Cell Science on 15 August 2021 by Eidell, K. P., Lovy, A., et al.

Integrin engagement within the immune synapse enhances T cell activation, but our understanding of this process is incomplete. In response to T cell receptor (TCR) ligation, SLP-76 (LCP2), ADAP (FYB1) and SKAP55 (SKAP1) are recruited into microclusters and activate integrins via the effectors talin-1 and kindlin-3 (FERMT3). We postulated that integrins influence the centripetal transport and signaling of SLP-76 microclusters via these linkages. We show that contractile myosin filaments surround and are co-transported with SLP-76 microclusters, and that TCR ligand density governs the centripetal movement of both structures. Centripetal transport requires formin activity, actomyosin contraction, microtubule integrity and dynein motor function. Although immobilized VLA-4 (α4β1 integrin) and LFA-1 (αLβ2 integrin) ligands arrest the centripetal movement of SLP-76 microclusters and myosin filaments, VLA-4 acts distally, while LFA-1 acts in the lamellum. Integrin β2, kindlin-3 and zyxin are required for complete centripetal transport, while integrin β1 and talin-1 are not. CD69 upregulation is similarly dependent on integrin β2, kindlin-3 and zyxin, but not talin-1. These findings highlight the integration of cytoskeletal systems within the immune synapse and reveal extracellular ligand-independent roles for LFA-1 and kindlin-3. This article has an associated First Person interview with the first author of the paper.
© 2021. Published by The Company of Biologists Ltd.

  • Cell Biology

Prenatal stem cell-based regenerative therapies have progressed substantially and have been demonstrated as effective treatment options for fetal diseases that were previously deemed untreatable. Due to immunoregulatory properties, self-renewal capacity, and multilineage potential, autologous human placental chorionic villus-derived mesenchymal stromal cells (CV-MSCs) are an attractive cell source for fetal regenerative therapies. However, as a general issue for MSC transplantation, the poor survival and engraftment is a major challenge of the application of MSCs. Particularly for the fetal transplantation of CV-MSCs in the naturally hypoxic fetal environment, improving the survival and engraftment of CV-MSCs is critically important. Hypoxic preconditioning (HP) is an effective priming approach to protect stem cells from ischemic damage. In this study, we developed an optimal HP protocol to enhance the survival and proangiogenic capacity of CV-MSCs for improving clinical outcomes in fetal applications. Total cell number, DNA quantification, nuclear area test, and cell viability test showed HP significantly protected CV-MSCs from ischemic damage. Flow cytometry analysis confirmed HP did not alter the immunophenotype of CV-MSCs. Caspase-3, MTS, and Western blot analysis showed HP significantly reduced the apoptosis of CV-MSCs under ischemic stimulus via the activation of the AKT signaling pathway that was related to cell survival. ELISA results showed HP significantly enhanced the secretion of vascular endothelial growth factor (VEGF) and hepatocyte growth factor (HGF) by CV-MSCs under an ischemic stimulus. We also found that the environmental nutrition level was critical for the release of brain-derived neurotrophic factor (BDNF). The angiogenesis assay results showed HP-primed CV-MSCs could significantly enhance endothelial cell (EC) proliferation, migration, and tube formation. Consequently, HP is a promising strategy to increase the tolerance of CV-MSCs to ischemia and improve their therapeutic efficacy in fetal clinical applications.
Copyright © 2019 Dake Hao et al.

  • FC/FACS
  • Homo sapiens (Human)
  • Stem Cells and Developmental Biology

Isolation and phenotyping of potential stem cells from the umbilical cord of the bottlenose dolphin(Tursiops truncatus).

In The International Journal of Developmental Biology on 30 June 2019 by Mancia, A., Zuccon, G., et al.

We have successfully isolated cells with stem-like properties from bottlenose dolphin (Tursiops truncatus) umbilical cord. Our results show that this cetacean species has embryonic fetal and adult stem cells as do humans and other studied mammals. This accomplishment allows to eventually investigate whether dolphins, due to their unique adaptations to aquatic environments, have special stem cell lineages or distinctive mechanisms of cell programming. Further characterization of their potency to differentiate into multiple cell lineages would fulfill numerous applicative purposes. We characterized, developed and refined a new protocol for obtaining potential stem cells from umbilical cord tissues of the bottlenose dolphin. Tissue samples were taken from umbilical cords of successful deliveries immediately after placenta ejection and collection from the water. Umbilical cord samples (2-3 cm3) were excised and subjected to enzymatic digestion and mechanical dissociation. Viable cells from specimens resident in the Oceanografic Valencia were cultured and subsequently isolated and tested for pluripotent characteristics (cell morphology, phenotype and expression of surface markers). Cell viability was confirmed also after freezing/thawing. The established protocol is suitable for collection/isolation/culture of dolphin potential mesenchymal stem cells from dolphin umbilical cord, which can be deposited in cell banks for future research needs.

  • FC/FACS
  • Stem Cells and Developmental Biology

As part of the Reproducibility Project: Cancer Biology we published a Registered Report (Evans et al., 2015), that described how we intended to replicate selected experiments from the paper 'Wnt activity defines colon cancer stem cells and is regulated by the microenvironment' (Vermeulen et al., 2010). Here, we report the results. Using three independent primary spheroidal colon cancer cultures that expressed a Wnt reporter construct we observed high Wnt activity was associated with the cell surface markers CD133, CD166, and CD29, but not CD24 and CD44, while the original study found all five markers were correlated with high Wnt activity (Figure 2F; Vermeulen et al., 2010). Clonogenicity was highest in cells with high Wnt activity and clonogenic potential of cells with low Wnt activity were increased by myofibroblast-secreted factors, including HGF. While the effects were in the same direction as the original study (Figure 6D; Vermeulen et al., 2010) whether statistical significance was reached among the different conditions varied. When tested in vivo, we did not find a difference in tumorigenicity between high and low Wnt activity, while the original study found cells with high Wnt activity were more effective in inducing tumors (Figure 7E; Vermeulen et al., 2010). Tumorigenicity, however, was increased with myofibroblast-secreted factors, which was in the same direction as the original study (Figure 7E; Vermeulen et al., 2010), but not statistically significant. Finally, we report meta-analyses for each results where possible.
© 2019, Essex et al.

  • FC/FACS
  • Homo sapiens (Human)
  • Cancer Research
  • Stem Cells and Developmental Biology
View this product on CiteAb