Product Citations: 8

Epstein-Barr virus mRNA vaccine synergizes with NK cells to enhance nasopharyngeal carcinoma eradication in humanized mice.

In Molecular Therapy. Oncology on 18 June 2025 by Huang, K., Lin, X. J., et al.

The close association between nasopharyngeal carcinoma (NPC) and Epstein-Barr virus (EBV) infection highlights the potential of therapeutic vaccination against viral antigens as an attractive immunotherapy for treating EBV+ NPC. Maximizing vaccine efficacy often requires selecting optimal T cell epitopes and incorporating co-treatment strategies. Here, we analyzed genomic mutations of 283 cancer-associated EBV strains and predicted epitopes with broad human leukocyte antigen (HLA) coverage from high-frequency nonsynonymous mutations. A polyepitope mRNA vaccine constructed from the predicted epitopes elicited antigen-specific T cell responses but showed suboptimal efficacy in tumor control in a PBMC-humanized mouse EBV+ NPC model. To enhance treatment efficacy, we developed an optimized system for expanding human natural killer (NK) cells with high purity and cytotoxicity as a co-treatment modality. Combined administration of mRNA vaccine and NK cells synergistically improved therapeutic efficacy by durably suppressing or eradicating NPC tumors in humanized mice. The concurrent treatment could improve the infiltration of both human T cells and NK cells into the tumor microenvironment and boost their effector functions. Our study suggests the combined therapeutic vaccination and NK cell therapy as a potential strategy for treating EBV+ NPC.
© 2025 The Author(s).

  • Cancer Research
  • Genetics
  • Immunology and Microbiology

Enhancing natural killer cells proliferation and cytotoxicity using imidazole-based lipid nanoparticles encapsulating interleukin-2 mRNA.

In Molecular Therapy. Nucleic Acids on 10 September 2024 by Delehedde, C., Ciganek, I., et al.

mRNA applications have undergone unprecedented applications-from vaccination to cell therapy. Natural killer (NK) cells are recognized to have a significant potential in immunotherapy. NK-based cell therapy has drawn attention as allogenic graft with a minimal graft-versus-host risk leading to easier off-the-shelf production. NK cells can be engineered with either viral vectors or electroporation, involving high costs, risks, and toxicity, emphasizing the need for alternative way as mRNA technology. We successfully developed, screened, and optimized novel lipid-based platforms based on imidazole lipids. Formulations are produced by microfluidic mixing and exhibit a size of approximately 100 nm with a polydispersity index of less than 0.2. They are able to transfect NK-92 cells, KHYG-1 cells, and primary NK cells with high efficiency without cytotoxicity, while Lipofectamine Messenger Max and D-Lin-MC3 lipid nanoparticle-based formulations do not. Moreover, the translation of non-modified mRNA was higher and more stable in time compared with a modified one. Remarkably, the delivery of therapeutically relevant interleukin 2 mRNA resulted in extended viability together with preserved activation markers and cytotoxic ability of both NK cell lines and primary NK cells. Altogether, our platforms feature all prerequisites needed for the successful deployment of NK-based therapeutic strategies.
© 2024 The Authors.

  • Homo sapiens (Human)
  • Genetics

Blinatumomab, a bispecific T cell engager (BiTE) antibody targeting CD19 and CD3ε, can redirect T cells toward CD19-positive tumor cells and has been approved to treat relapsed/refractory B-cell acute lymphoblastic leukemia (R/R B-ALL). However, chemotherapeutic regimens can severely reduce T cells' number and cytotoxic function, leading to an inadequate response to blinatumomab treatment in patients. In addition, it was reported that a substantial portion of R/R B-ALL patients failing blinatumomab treatment had the extramedullary disease, indicating the poor ability of blinatumomab in treating extramedullary disease. In this study, we investigated whether the adoptive transfer of ex vivo expanded γ9δ2 T cells could act as the effector of blinatumomab to enhance blinatumomab's antitumor activity against B-cell malignancies in vivo. Repeated infusion of blinatumomab and human γ9δ2 T cells led to more prolonged survival than that of blinatumomab or human γ9δ2 T cells alone in the mice xenografted with Raji cells. Furthermore, adoptive transfer of γ9δ2 T cells reduced tumor mass outside the bone marrow, indicating the potential of γ9δ2 T cells to eradicate the extramedullary disease. Our results suggest that the addition of γ9δ2 T cells to the blinatumomab treatment regimens could be an effective approach to enhancing blinatumomab's therapeutic efficacy. The concept of this strategy may also be applied to other antigen-specific BiTE therapies for other malignancies.

  • FC/FACS
  • Immunology and Microbiology

Cytokine-inducible SH2-containing protein (CIS; encoded by the gene CISH) is a key negative regulator of interleukin-15 (IL-15) signaling in natural killer (NK) cells. Here, we develop human CISH-knockout (CISH-/-) NK cells using an induced pluripotent stem cell-derived NK cell (iPSC-NK cell) platform. CISH-/- iPSC-NK cells demonstrate increased IL-15-mediated JAK-STAT signaling activity. Consequently, CISH-/- iPSC-NK cells exhibit improved expansion and increased cytotoxic activity against multiple tumor cell lines when maintained at low cytokine concentrations. CISH-/- iPSC-NK cells display significantly increased in vivo persistence and inhibition of tumor progression in a leukemia xenograft model. Mechanistically, CISH-/- iPSC-NK cells display improved metabolic fitness characterized by increased basal glycolysis, glycolytic capacity, maximal mitochondrial respiration, ATP-linked respiration, and spare respiration capacity mediated by mammalian target of rapamycin (mTOR) signaling that directly contributes to enhanced NK cell function. Together, these studies demonstrate that CIS plays a key role to regulate human NK cell metabolic activity and thereby modulate anti-tumor activity.
Copyright © 2020 Elsevier Inc. All rights reserved.

  • Biochemistry and Molecular biology
  • Cancer Research
  • Cell Biology
  • Stem Cells and Developmental Biology

Natural killer (NK) cells are a critical component of the innate immune system. However, their ontogenic origin has remained unclear. Here, we report that NK cell potential first arises from Hoxaneg/low Kit+CD41+CD16/32+ hematopoietic-stem-cell (HSC)-independent erythro-myeloid progenitors (EMPs) present in the murine yolk sac. EMP-derived NK cells and primary fetal NK cells, unlike their adult counterparts, exhibit robust degranulation in response to stimulation. Parallel studies using human pluripotent stem cells (hPSCs) revealed that HOXAneg/low CD34+ progenitors give rise to NK cells that, similar to murine EMP-derived NK cells, harbor a potent cytotoxic degranulation bias. In contrast, hPSC-derived HOXA+ CD34+ progenitors, as well as human cord blood CD34+ cells, give rise to NK cells that exhibit an attenuated degranulation response but robustly produce inflammatory cytokines. Collectively, our studies identify an extra-embryonic origin of potently cytotoxic NK cells, suggesting that ontogenic origin is a relevant factor in designing hPSC-derived adoptive immunotherapies.
Copyright © 2020 Elsevier Inc. All rights reserved.

  • Stem Cells and Developmental Biology
View this product on CiteAb