Product Citations: 19

1 image found

The development of human prenatal adaptive immunity progresses faster than previously appreciated, with the emergence of memory CD4+ T cells alongside regulatory T cells by midgestation. We previously identified a prenatal specific population of promyelocytic leukemia zinc finger-positive (PLZF+) CD4+ T cells with heightened effector potential that were enriched in the developing intestine and accumulated in the cord blood of infants exposed to prenatal inflammation. However, the signals that drive their tissue distribution and effector maturation are unknown. Here, we define the transcriptional and functional heterogeneity of human prenatal PLZF+CD4+ T cells and identify the compartmentalization of T helper-like (Th-like) effector function across the small intestine (SI) and mesenteric lymph nodes (MLNs). IL-7 was more abundant in the SI relative to the MLNs and drove the preferential expansion of naive PLZF+CD4+ T cells via enhanced STAT5 and MEK/ERK signaling. Exposure to IL-7 was sufficient to induce the acquisition of CD45RO expression and rapid effector function in a subset of PLZF+CD4+ T cells, identifying a human analog of memory phenotype CD4+ T cells. Further, IL-7 modulated the differentiation of Th1- and Th17-like PLZF+CD4+ T cells and thus likely contributes to the anatomic compartmentalization of human prenatal CD4+ T cell effector function.

  • IHC-IF
  • Immunology and Microbiology

T Lymphocyte Subsets Profile and Toll-Like Receptors Responses in Patients with Herpes Zoster.

In Journal of Pain Research on 23 May 2023 by Chen, W., Zhu, L., et al.

Herpes zoster (HZ) is caused by the varicella-zoster virus (VZV), and 20% of healthy humans and 50% of people with immune dysfunction have a high probability of suffering from HZ. This study aimed to screen dynamic immune signatures and explore the potential mechanism during HZ progression.
Peripheral blood samples from 31 HZ patients and 32 age-sex-matched healthy controls were collected and analyzed. The protein levels and gene levels of toll-like receptors (TLRs) were detected in peripheral blood mononuclear cells (PBMCs) by flow cytometry and quantitative real-time PCR. Further, the characteristics of T cell subsets and cytokines were detected via a cytometric bead array.
Compared to healthy controls, the mRNA levels of TLR2, TLR4, TLR7, and TLR9 mRNA in PBMCs were significantly increased in HZ patients. The protein level of TLR4 and TLR7 was significantly increased in HZ patients, but the levels of TLR2 and TLR9 were dramatically decreased. The CD3+ T cells were constant in HZ and healthy controls. CD4+ T cells were decreased in HZ patients, while CD8+ T cells were increased, resulting in an improved CD4+/CD8+ T cells ratio. Further, it was found that Th2 and Th17 were not changed, but the decreased Th1 and upregulated Treg cells were found in HZ. The Th1/Th2 and Th17/Treg ratios were significantly decreased. Last, the levels of IL-6, IL-10, and IFN-γ were significantly increased, but IL-2, IL-4, and IL-17A had no significant changes.
The dysfunction of host's lymphocytes and activation of TLRs in PBMCs were the important mechanism in varicella-zoster virus induced herpes zoster. TLRs might be the core targets for the therapy drug development in treating HZ.
© 2023 Chen et al.

  • FC/FACS
  • Immunology and Microbiology

CD4+ T-helper 17 (Th17) T cells are a key population in protective immunity during infection and in self-tolerance/autoimmunity. Through the secretion of IL-17, Th17 cells act in promotion of inflammation and are thus a major potential therapeutic target in autoimmune disorders. Recent reports have brought to light that the IL-17 family cytokines, IL-17A, IL-17F and IL-17AF, can directly act on CD4+ T-cells, both in murine and human systems, inducing functional changes in these cells. Here we show that this action is preferentially targeted toward naïve, but not memory, CD4+ T-cells. Naïve cells showed transcriptome changes as early as 48 hours post-IL-17 exposure, whereas memory cells remained unaffected as late as 7 days. These functional differences occurred despite similar IL-17 receptor expression on these subsets and were maintained in co-culture/transwell systems, with each subset maintaining its functional response to IL-17. Importantly, there were differences in downstream transcriptional signaling by the three IL-17 cytokines, with the IL-17AF heterodimer conferring both the greatest transcriptional change and most altered functional consequences. Detailed transcriptome analysis provides important insights into the genes and pathways that are modulated as a result of IL-17-mediated signaling and may serve as targets of future therapies.
Copyright: This is an open access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication.

  • FC/FACS
  • Homo sapiens (Human)
  • Immunology and Microbiology

We introduce a novel approach to determine the critical quality attributes (CQAs) of mesenchymal stem cells (MSCs) expected to exert immunosuppressive effects. MSCs retained homeostatic replication potentials, such as sustainable growth and consistent cell morphology as a population, in early passages, but lost them in late passages. Characteristic surface markers of MSCs (ie, CD73, CD90, and CD105) were no longer expressed at 2 weeks after subcutaneous transplantation into NOG mice when MSCs from late passages were transplanted, but not when MSCs from early passages were transplanted, suggesting that the biological effects of the MSCs differed according to the timing of cell harvesting and highlighting the importance of specifying MSCs that retained homeostatic features to define the CQAs. The homeostatic features of MSCs related to the balance of the redox system, nutrient requirements, and mitochondrial function were also observed until a certain passage. Therefore, we could define the CQAs of MSCs related to manufacturing by selecting process parameters (PPs) underlying the homeostatic features of MSCs and measuring these PPs quantitatively to specify the cell population with homeostatic features by limiting the passage number. The validity of the PPs stipulated in our pilot study was verified using an SKG murine arthritis model, and critical PPs (CPPs) were then selected among the PPs. Thus, CQAs related to manufacturing in the developmental phase could be defined by the CPPs in this manner, and the concept of CQAs could be refined continuously toward commercial manufacturing.
© The Author(s) 2023. Published by Oxford University Press.

  • FC/FACS
  • Stem Cells and Developmental Biology

Single-cell characterization of anti-LAG-3 and anti-PD-1 combination treatment in patients with melanoma.

In The Journal of Clinical Investigation on 15 March 2023 by Huuhtanen, J., Kasanen, H., et al.

BackgroundRelatlimab plus nivolumab (anti-lymphocyte-activation gene 3 plus anti-programmed death 1 [anti-LAG-3+anti-PD-1]) has been approved by the FDA as a first-line therapy for stage III/IV melanoma, but its detailed effect on the immune system is unknown.MethodsWe evaluated blood samples from 40 immunotherapy-naive or prior immunotherapy-refractory patients with metastatic melanoma treated with anti-LAG-3+anti-PD-1 in a phase I trial using single-cell RNA and T cell receptor sequencing (scRNA+TCRαβ-Seq) combined with other multiomics profiling.ResultsThe highest LAG3 expression was noted in NK cells, Tregs, and CD8+ T cells, and these cell populations underwent the most significant changes during the treatment. Adaptive NK cells were enriched in responders and underwent profound transcriptomic changes during the therapy, resulting in an active phenotype. LAG3+ Tregs expanded, but based on the transcriptome profile, became metabolically silent during the treatment. Last, higher baseline TCR clonality was observed in responding patients, and their expanding CD8+ T cell clones gained a more cytotoxic and NK-like phenotype.ConclusionAnti-LAG-3+anti-PD-1 therapy has profound effects on NK cells and Tregs in addition to CD8+ T cells.Trial registrationClinicalTrials.gov (NCT01968109)FundingCancer Foundation Finland, Sigrid Juselius Foundation, Signe and Ane Gyllenberg Foundation, Relander Foundation, State funding for university-level health research in Finland, a Helsinki Institute of Life Sciences Fellow grant, Academy of Finland (grant numbers 314442, 311081, 335432, and 335436), and an investigator-initiated research grant from BMS.

  • Homo sapiens (Human)
  • Cancer Research
View this product on CiteAb