Product Citations: 5

1 image found

Irradiation with X-rays has been widely utilized in the clinical treatment of solid tumors and certain hematopoietic malignancies. However, this method fails to completely distinguish between malignant and normal cells. Prolonged or repeated exposure to radiation, whether due to occupational hazards or therapeutical interventions, can cause damage to normal tissues, particularly impacting the hematopoietic system. Therefore, it is important to investigate the effects of total body irradiation on the hematopoietic system of mice and to compare the inhibitory effects of various doses of irradiation on this system. In this study, we primarily employed flow cytometry to analyze mature lineage cells in the peripheral blood, as well as immature hematopoietic stem and progenitor cells (HSPCs) in the bone marrow and spleen. Additionally, we evaluated the multilineage differentiation capacity of HSPCs through colony-forming cell assays. Our results indicated that peripheral B and T cells demonstrated increased sensitivity to irradiation, with significant cell death observed 1-day post-irradiation. Common lymphoid progenitor cells exhibited greater radiotolerance compared to other progenitor cell types, enabling them to maintain a certain population even at elevated doses. Moreover, notable differences were observed between intramedullary and extramedullary hematopoietic stem cells and common lymphoid progenitor cells regarding the extent of damage and recovery rate following irradiation. The multilineage differentiation capacity of HSPCs was also compromised during radiation exposure. In conclusion, different types of mature blood cells, along with immature HSPCs, exhibited varying degrees of sensitivity and tolerance to irradiation, resulting in distinct alterations in cell percentages and numbers.
Copyright © 2024 The Authors. Published by Wolters Kluwer Health Inc., on behalf of the Chinese Medical Association (CMA) and Institute of Hematology, Chinese Academy of Medical Sciences & Peking Union Medical College (IHCAMS).

  • Mus musculus (House mouse)

Prothymosin α accelerates dengue virus-induced thrombocytopenia.

In IScience on 19 January 2024 by Yang, M. L., Lin, C. L., et al.

Thrombocytopenia is the hallmark finding in dengue virus (DENV) infection. Prothymosin α (ProT) has both intracellular and extracellular functions involved in cell cycle progression, cell differentiation, gene regulation, oxidative stress response, and immunomodulation. In this study, we found that ProT levels were elevated in dengue patient sera as well as DENV-infected megakaryoblasts and their culture supernatants. ProT transgenic mice had reduced platelet counts with prolonged bleeding times. Upon treatment with DENV plus anti-CD41 antibody, they exhibited severe skin hemorrhage. Furthermore, overexpression of ProT suppressed megakaryocyte differentiation. Infection with DENV inhibited miR-126 expression, upregulated DNA (cytosine-5)-methyltransferase 1 (DNMT1), downregulated GATA-1, and increased ProT expression. Upregulation of ProT led to Nrf2 activation and reduced reactive oxygen species production, thereby suppressing megakaryopoiesis. We report the pathophysiological role of ProT in DENV infection and propose an involvement of the miR-126-DNMT1-GATA-1-ProT-Nrf2 signaling axis in DENV-induced thrombocytopenia.
© 2023 The Authors.

  • Mus musculus (House mouse)
  • Immunology and Microbiology

Thrombocytopenia is a major complication in a subset of patients with multiple myeloma (MM). However, little is known about its development and significance during MM. Here, we show thrombocytopenia is linked to poor prognosis in MM. In addition, we identify serine, which is released from MM cells into the bone marrow microenvironment, as a key metabolic factor that suppresses megakaryopoiesis and thrombopoiesis. The impact of excessive serine on thrombocytopenia is mainly mediated through the suppression of megakaryocyte (MK) differentiation. Extrinsic serine is transported into MKs through SLC38A1 and downregulates SVIL via SAM-mediated tri-methylation of H3K9, ultimately leading to the impairment of megakaryopoiesis. Inhibition of serine utilization or treatment with TPO enhances megakaryopoiesis and thrombopoiesis and suppresses MM progression. Together, we identify serine as a key metabolic regulator of thrombocytopenia, unveil molecular mechanisms governing MM progression, and provide potential therapeutic strategies for treating MM patients by targeting thrombocytopenia.
© 2023. The Author(s).

  • IHC-IF

Vascular damage effect of circulating microparticles in patients with ACS is aggravated by type 2 diabetes.

In Molecular Medicine Reports on 1 June 2021 by Wang, X. L., Zhang, W., et al.

As a common factor of both type 2 diabetes mellitus (T2DM) and acute coronary syndrome (ACS), circulating microparticles (MPs) may provide a link between these two diseases. The present study compared the content and function of MPs from patients with ACS with or without T2DM. MPs from healthy subjects (n=20), patients with ACS (n=24), patients with T2DM (n=20) and patients with combined ACS and T2DM (n=24) were obtained. After incubating rat thoracic tissue with MPs, the effect of MPs on endothelial‑dependent vasodilatation, expression of caveolin‑1 and endothelial nitric oxide synthase (eNOS), phosphorylation of eNOS at the S1177 and T495 sites and its association with heat shock protein 90 (Hsp90), and the generation of NO and superoxide anion (O2˙‑) were determined. MP concentrations were higher in patients with T2DM and patients with ACS with or without T2DM than in healthy subjects. Moreover, MPs from patients with T2DM or ACS led to impairment in endothelial‑dependent vasodilatation, decreased expression of NO, as well as eNOS and its phosphorylation at Ser1177 and association with Hsp90, but increased eNOS phosphorylation at T495, caveolin‑1 expression and O2˙‑ generation. These effects were strengthened by MPs from patients with ACS combined with T2DM. T2DM not only increased MP content but also resulted in greater vascular impairment effects in ACS. These results may provide novel insight into the treatment of patients with ACS and T2DM.

  • FC/FACS
  • Biochemistry and Molecular biology

Severe appetite and weight loss define the eating disorder anorexia nervosa, and can also accompany the progression of some neurodegenerative disorders such as amyotrophic lateral sclerosis (ALS). Although acute loss of hypothalamic neurons that produce appetite-stimulating neuropeptide Y (Npy) and agouti-related peptide (Agrp) in adult mice or in mice homozygous for the anorexia (anx) mutation causes aphagia, our understanding of the factors that help maintain appetite regulatory circuitry is limited. Here we identify a mutation (C19T) that converts an arginine to a tryptophan (R7W) in the TYRO3 protein tyrosine kinase 3 (Tyro3) gene, which resides within the anx critical interval, as contributing to the severity of anx phenotypes. Our observation that, like Tyro3-/- mice, anx/anx mice exhibit abnormal secondary platelet aggregation suggested that the C19T Tyro3 variant might have functional consequences. Tyro3 is expressed in the hypothalamus and other brain regions affected by the anx mutation, and its mRNA localization appeared abnormal in anx/anx brains by postnatal day 19 (P19). The presence of wild-type Tyro3 transgenes, but not an R7W-Tyro3 transgene, doubled the weight and lifespans of anx/anx mice and near-normal numbers of hypothalamic Npy-expressing neurons were present in Tyro3-transgenic anx/anx mice at P19. Although no differences in R7W-Tyro3 signal sequence function or protein localization were discernible in vitro, distribution of R7W-Tyro3 protein differed from that of Tyro3 protein in the cerebellum of transgenic wild-type mice. Thus, R7W-Tyro3 protein localization deficits are only detectable in vivo Further analyses revealed that the C19T Tyro3 mutation is present in a few other mouse strains, and hence is not the causative anx mutation, but rather an anx modifier. Our work shows that Tyro3 has prosurvival roles in the appetite regulatory circuitry and could also provide useful insights towards the development of interventions targeting detrimental weight loss.
© 2017. Published by The Company of Biologists Ltd.

  • FC/FACS
  • Mus musculus (House mouse)
  • Neuroscience
View this product on CiteAb