Product Citations: 28

1 image found

Sexual dimorphism in the mouse bone marrow niche regulates hematopoietic engraftment via sex-specific Kdm5c/Cxcl12 signaling.

In The Journal of Clinical Investigation on 21 January 2025 by Cui, X., Hou, L., et al.

The bone marrow (BM) niche is critical in regulating hematopoiesis, and sexual dimorphism and its underlying mechanism in the BM niche and its impact on hematopoiesis are not well understood. We show that male mice exhibited a higher abundance of leptin-receptor-expressing mesenchymal stromal cells (LepR-MSCs) compared with female mice. Sex-mismatched coculture and BM transplantation showed that the male BM niche provided superior support for in vitro colony formation and in vivo hematopoietic engraftment. The cotransplantation of male stromal cells significantly enhanced engraftment in female recipients. Single-cell RNA-seq revealed that the lower expression of the X-linked lysine H3K4 demethylase, Kdm5c, in male MSCs led to the increased expression of Cxcl12. In MSC-specific Kdm5c-KO mouse model, the reduction of KDM5C in female MSCs enhanced MSC quantity and function, ultimately improving engraftment to the male level. Kdm5c thus plays a role in driving sexual dimorphism in the BM niche and hematopoietic regeneration. Our study unveils a sex-dependent mechanism governing the BM niche regulation and its impact on hematopoietic engraftment. The finding offers potential implications for enhancing BM transplantation efficacy in clinical settings by harnessing the resource of male MSCs or targeting Kdm5c.

The nucleoprotein (NP) of type A influenza virus (IAV) is highly conserved across all virus strains, making it an attractive candidate antigen for universal vaccines. While various studies have explored NP-induced mucosal immunity, here we interrogated the mechanistic differences between intramuscular (IM) and intranasal (IN) delivery of a recombinant adenovirus carrying NP fused with a bifunctional CD40 ligand. Despite being less effective than IM delivery in inducing systemic cellular immune responses and antibody-dependent cellular cytotoxicity (ADCC), IN immunization elicited superior antigen-specific recall humoral and cellular response in the nasal associated lymphoid tissue (NALT) of the upper respiratory tract, the initial site of immune recognition and elimination of inhaled pathogens. IN vaccination also induced significantly stronger pulmonary T cell responses in the lower respiratory tract than IM vaccination, in particular the CD8 T cells. Moreover, blocking lymphocyte circulation abrogated IM but not IN immunization induced protection, illustrating the critical role of local memory immune response upon viral infection. Notably, the CD40-targeted nasal delivery not only improved the magnitude but also the breadth of protection, including against lethal challenge with a newly isolated highly pathogenic avian H5N1 strain. These findings are informative for the design of universal mucosal vaccines, where the predominant mode of protection is independent of neutralizing antibodies.

  • Mus musculus (House mouse)
  • Immunology and Microbiology

Intestinal microbiota programming of alveolar macrophages influences severity of respiratory viral infection.

In Cell Host & Microbe on 13 March 2024 by Ngo, V. L., Lieber, C. M., et al.

Susceptibility to respiratory virus infections (RVIs) varies widely across individuals. Because the gut microbiome impacts immune function, we investigated the influence of intestinal microbiota composition on RVI and determined that segmented filamentous bacteria (SFB), naturally acquired or exogenously administered, protected mice against influenza virus (IAV) infection. Such protection, which also applied to respiratory syncytial virus and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), was independent of interferon and adaptive immunity but required basally resident alveolar macrophages (AMs). In SFB-negative mice, AMs were quickly depleted as RVI progressed. In contrast, AMs from SFB-colonized mice were intrinsically altered to resist IAV-induced depletion and inflammatory signaling. Yet, AMs from SFB-colonized mice were not quiescent. Rather, they directly disabled IAV via enhanced complement production and phagocytosis. Accordingly, transfer of SFB-transformed AMs into SFB-free hosts recapitulated SFB-mediated protection against IAV. These findings uncover complex interactions that mechanistically link the intestinal microbiota with AM functionality and RVI severity.
Copyright © 2024 Elsevier Inc. All rights reserved.

  • Immunology and Microbiology

Deficiency in astrocyte CCL2 production reduces neuroimmune control of Toxoplasma gondii infection.

In PLoS Pathogens on 1 January 2024 by Orchanian, S. B., Still, K., et al.

Toxoplasma gondii is an obligate intracellular parasite that infects one-third of the world's human population and establishes infection in the brain. Cerebral immune cell infiltration is critical for controlling the parasite, but little is known about the molecular cues guiding immune cells to the brain during infection. Activated astrocytes produce CCL2, a chemokine that mediates inflammatory monocyte recruitment to tissues by binding to the CCR2 receptor. We detected elevated CCL2 production in the brains of C57BL/6J mice by 15 days after T. gondii infection. Utilizing confocal microscopy and intracellular flow cytometry, we identified microglia and brain-infiltrating myeloid cells as the main producers of CCL2 during acute infection, and CCL2 was specifically produced in regions of parasite infection in the brain. In contrast, astrocytes became the dominant CCL2 producer during chronic T. gondii infection. To determine the role of astrocyte-derived CCL2 in mobilizing immune cells to the brain and controlling T. gondii infection, we generated GFAP-Cre x CCL2fl/fl mice, in which astrocytes are deficient in CCL2 production. We observed significantly decreased immune cell recruitment and increased parasite burden in the brain during chronic, but not acute, infection of mice deficient in astrocyte CCL2 production, without an effect on peripheral immune responses. To investigate potential mechanisms explaining the reduced control of T. gondii infection, we analyzed key antimicrobial and immune players in host defense against T. gondii and detected a reduction in iNOS+ myeloid cells, and T. gondii-specific CD4+ T cells in the knockout mice. These data uncover a critical role for astrocyte-derived CCL2 in immune cell recruitment and parasite control in the brain during chronic, but not acute, T. gondii infection.
Copyright: © 2024 Orchanian et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

  • FC/FACS
  • Mus musculus (House mouse)
  • Immunology and Microbiology
  • Neuroscience

T regulatory cells (Tregs) are a potential therapeutic target in many autoimmune diseases including rheumatoid arthritis (RA). The mechanisms responsible for the maintenance of Tregs in chronic inflammatory conditions such as RA are poorly understood. We employed our mouse model of RA in which, the following deletion of Flice-like inhibitory protein in CD11c+ cells, CD11c-FLIP-KO (HUPO) mice develop spontaneous, progressive, erosive arthritis, with reduced Tregs, and the adoptive transfer of Tregs ameliorates the arthritis. HUPO thymic Treg development was normal, but peripheral of Treg Foxp3 was diminished mediated by reduction of dendritic cells and interleukin-2 (IL-2). During chronic inflammatory arthritis Tregs fail to maintain Foxp3, leading to non-apoptotic cell death and conversion to CD4+CD25+Foxp3- cells. Treatment with IL-2 increased Tregs and ameliorated the arthritis. In summary, reduced dendritic cells and IL-2 in the milieu of chronic inflammation, contribute to Treg instability, promoting HUPO arthritis progression, and suggesting a therapeutic approach in RA.
© 2023 The Author(s).

  • Mus musculus (House mouse)
  • Immunology and Microbiology
View this product on CiteAb