Product Citations: 6

Osteoarthritis (OA) is one of the most common joint diseases and a major global public health concern. Mesenchymal stem cells (MSCs) have been widely used for the treatment of OA owing to their paracrine secretion of trophic factors, a phenomenon in which exosomes may play a major role. Here, we investigate the potential of exosomes from human umbilical cord-derived MSCs (hUC-MSCs-Exos) in alleviating OA.
The hUC-MSCs-Exos were harvested from hUC-MSC-conditioned medium using ultracentrifugation. Rats with surgically-induced OA were intra-articularly injected with hUC-MSCs-Exos. The effect of hUC-MSCs-Exos in repairing osteoarticular cartilage was assessed using hematoxylin and eosin (HE) staining, safranin-O and fast green staining and immunohistochemistry. The in vitro experiments were further carried out to verify the therapeutic effect. The effects of hUC-MSCs-Exos on the proliferation and migration of human chondrocytes were evaluated using the cell counting kit-8, EdU-555 cell proliferation kit, and transwell assays. Annexin V-FITC/PI staining were used to evaluate the effect of exosomes on chondrocyte apoptosis. An in vitro model of human articular chondrocytes treated with interleukin 1 beta (IL-1β) was used to evaluate the effects of exosomes, analyses involved using quantitative real-time polymerase chain reaction (qRT-PCR), immunofluorescence, and western blotting. The role of hUC-MSCs-Exos in macrophage polarization was examined in the monocyte cell line, Tohoku Hospital Pediatrics-1 (THP-1) by qRT-PCR and immunofluorescence.
The results showed that hUC-MSCs-Exos prevented severe damage to the knee articular cartilage in the rat OA model. We confirmed the high efficacy of hUC-MSCs-Exos in promoting chondrocyte proliferation and migration and inhibiting chondrocyte apoptosis. Additionally, hUC-MSCs-Exos could reverse IL-1β-induced injury of chondrocytes and regulate the polarization of macrophages in vitro.
There is potential for hUC-MSCs-Exos to be used as a treatment strategy for OA.
2022 Annals of Translational Medicine. All rights reserved.

  • Stem Cells and Developmental Biology

The anti-parasitic drug miltefosine suppresses activation of human eosinophils and ameliorates allergic inflammation in mice.

In British Journal of Pharmacology on 1 March 2021 by Knuplez, E., Kienzl, M., et al.

Miltefosine is an alkylphosphocholine drug with proven effectiveness against various types of parasites and cancer cells. Miltefosine is not only able to induce direct parasite killing but also modulates host immunity, for example by reducing the severity of allergies in patients. To date, there are no reports on the effect of miltefosine on eosinophils, central effector cells involved in allergic inflammation.
We tested the effect of miltefosine on the activation of human eosinophils and their effector responses in vitro and in mouse models of eosinophilic migration and ovalbumin-induced allergic lung inflammation.
The addition of miltefosine suppressed several eosinophilic effector reactions such as CD11b up-regulation, degranulation, chemotaxis and downstream signalling. Miltefosine significantly reduced the infiltration of immune cells into the respiratory tract of mice in an allergic cell recruitment model. Finally, in a model of allergic inflammation, treatment with miltefosine resulted in an improvement of lung function parameters.
Our observations suggest a strong modulatory activity of miltefosine in the regulation of eosinophilic inflammation in vitro and in vivo. Our data underline the potential efficacy of miltefosine in the treatment of allergic diseases and other eosinophil-associated disorders and may raise important questions regarding the immunomodulatory effect of miltefosine in patients treated for leishmania infections.
© 2021 The Authors. British Journal of Pharmacology published by John Wiley & Sons Ltd on behalf of British Pharmacological Society.

  • Immunology and Microbiology
  • Pharmacology

Plant defensin PvD1 modulates the membrane composition of breast tumour-derived exosomes.

In Nanoscale on 28 December 2019 by Skalska, J., Oliveira, F. D., et al.

One of the most important causes of failure in tumour treatment is the development of resistance to therapy. Cancer cells can develop the ability to lose sensitivity to anti-neoplastic drugs during reciprocal crosstalk between cells and their interaction with the tumour microenvironment (TME). Cell-to-cell communication regulates a cascade of interdependent events essential for disease development and progression and can be mediated by several signalling pathways. Exosome-mediated communication is one of the pathways regulating these events. Tumour-derived exosomes (TDE) are believed to have the ability to modulate TMEs and participate in multidrug resistance mechanisms. In this work, we studied the effect of the natural defensin from common bean, PvD1, on the formation of exosomes by breast cancer MCF-7 cells, mainly the modulatory effect it has on the level of CD63 and CD9 tetraspanins. Moreover, we followed the interaction of PvD1 with biological and model membranes of selected composition, by biophysical and imaging techniques. Overall, the results show that PvD1 induces a dual effect on MCF-7 derived exosomes: the peptide attenuates the recruitment of CD63 and CD9 to exosomes intracellularly and binds to the mature exosomes in the extracellular environment. This work uncovers the exosome-mediated anticancer action of PvD1, a potential nutraceutical agent.

  • Cancer Research

To determine if prostate-derived extracellular vesicles (EVs) present in patient plasma samples are of exocytotic origin (exosomes) or released by the cell membrane (microparticles/microvesicles). Both malignant and normal prostate cells release two types of EVs into the circulation, exosomes, and microparticles/microvesicles which differ in size, origin, and mode of release. Determining what proportion of prostate-derived EVs are of exosomal versus microparticle/microvesicle EV subtype is of potential diagnostic significance.
Multi-parametric analytical platforms such as nanoscale flow cytometry (nFC) were used to analyze prostate derived extracellular vesicles. Plasmas from prostate cancer (PCa) patient plasmas representing benign prostatic hyperplasia (BPH), low grade prostate cancer (Gleason Score 3 + 3) and high grade prostate cancer (Gleason Score ≥4 + 4) were analyzed for various exosome markers (CD9, CD63, CD81) and a prostate specific tissue marker (prostate specific membrane antigen/PSMA).
By using nanoscale flow cytometry, we determine that prostate derived EVs are primarily of cell membrane origin, microparticles/microvesicles, and not all PSMA expressing EVs co-express exosomal markers such as CD9, CD63, and CD81. CD9 was the most abundant exosomal marker on prostate derived EVs (12-19%). There was no trend observed in terms of more PSMA + CD9 or PSMA + CD63 co-expressing EVs versus increasing grade of prostate cancer.
The majority of prostate derived EVs present in plasmas are from the cell membrane as evidenced by their size and most importantly, lack of co-expression of exosomal markers such as CD9/CD63/CD81. In fact, CD81 was not present on any prostate derived EVs in patient plasmas whereas CD9 was present on a minority of prostate derived EVs. The addition of an exosomal marker for detection of prostate-derived EVs does not provide greater clarity in distinguishing EVs released by the prostate.
© 2019 Wiley Periodicals, Inc.

Expansion of BCR/ABL1+ cells requires PAK2 but not PAK1.

In British Journal of Haematology on 1 October 2017 by Edlinger, L., Berger-Becvar, A., et al.

The p21-activated kinases (PAKs) are key nodes in oncogenic signalling pathways controlling growth, survival, and motility of cancer cells. Their activity is increased in many human cancers and is associated with poor prognosis. To date, PAK deregulation has mainly been studied in solid tumours, where PAK1 and PAK4 are the main isoforms deregulated. We show that PAK1 and PAK2 are the critical isoforms in a BCR/ABL1+ haematopoietic malignancy. In suspension, leukaemic cells deficient for PAK1 and PAK2 undergo apoptosis, while the loss of either protein is well tolerated. Transfer of medium conditioned by shPAK2- but not shPAK1-expressing leukaemic cells interferes with endothelial cell growth. We found that leukaemic cells produce exosomes containing PAK2. Transfer of isolated exosomes supports endothelial cell proliferation. In parallel, we found that leukaemic cells explicitly require PAK2 to grow towards an extracellular matrix. PAK2-deficient cells fail to form colonies in methylcellulose and to induce lymphomas in vivo. PAK2 might therefore be the critical isoform in leukaemic cells by controlling tumour growth in a dual manner: vascularization via exosome-mediated transfer to endothelial cells and remodelling of the extracellular matrix. This finding suggests that the PAK2 isoform represents a promising target for the treatment of haematological diseases.
© 2017 The Authors. British Journal of Haematology published by John Wiley & Sons Ltd.

  • FC/FACS
  • Homo sapiens (Human)
  • Cardiovascular biology
View this product on CiteAb