Product Citations: 5

Evidence from clinical trials suggests that CXCR4 antagonists enhance immunotherapy effectiveness in several cancers. However, the specific mechanisms through which CXCR4 contributes to immune cell phenotypes are not fully understood. Here, we employed single-cell transcriptomic analysis and identified CXCR4 as a marker gene in T cells, with CD8+PD-1high exhausted T (Tex) cells exhibiting high CXCR4 expression. By blocking CXCR4, the Tex phenotype was attenuated in vivo. Mechanistically, CXCR4-blocking T cells mitigated the Tex phenotype by regulating the JAK2-STAT3 pathway. Single-cell RNA/TCR/ATAC-seq confirmed that Cxcr4-deficient CD8+ T cells epigenetically mitigated the transition from functional to exhausted phenotypes. Notably, clinical sample analysis revealed that CXCR4+CD8+ T cells showed higher expression in patients with a non-complete pathological response. Collectively, these findings demonstrate the mechanism by which CXCR4 orchestrates CD8+ Tex cells and provide a rationale for combining CXCR4 antagonists with immunotherapy in clinical trials.
Copyright © 2024 The Author(s). Published by Elsevier Inc. All rights reserved.

  • Immunology and Microbiology

T cell activation triggers reversible inosine-5'-monophosphate dehydrogenase assembly.

In Journal of Cell Science on 5 September 2018 by Duong-Ly, K. C., Kuo, Y. M., et al.

T cell-mediated adaptive immunity requires naïve, unstimulated T cells to transition from a quiescent metabolic state into a highly proliferative state upon T cell receptor engagement. This complex process depends on transcriptional changes mediated by Ca2+-dependent NFAT signaling, mTOR-mediated signaling and increased activity of the guanine nucleotide biosynthetic inosine-5'-monophosphate (IMP) dehydrogenase 1 and 2 enzymes (IMPDH1 and IMPDH2, hereafter IMPDH). Inhibitors of these pathways serve as potent immunosuppressants. Unexpectedly, we discovered that all three pathways converge to promote the assembly of IMPDH protein into micron-scale macromolecular filamentous structures in response to T cell activation. Assembly is post-transcriptionally controlled by mTOR and the Ca2+ influx regulator STIM1. Furthermore, IMPDH assembly and catalytic activity were negatively regulated by guanine nucleotide levels, suggesting a negative feedback loop that limits biosynthesis of guanine nucleotides. Filamentous IMPDH may be more resistant to this inhibition, facilitating accumulation of the higher GTP levels required for T cell proliferation.
© 2018. Published by The Company of Biologists Ltd.

  • Mus musculus (House mouse)
  • Cell Biology
  • Immunology and Microbiology

BPTF inhibits NK cell activity and the abundance of natural cytotoxicity receptor co-ligands.

In Oncotarget on 8 September 2017 by Mayes, K., Elsayed, Z., et al.

Using syngeneic BALB/c mouse breast cancer models, we show that the chromatin remodeling subunit bromodomain PHD finger transcription factor (BPTF) suppresses natural killer (NK) cell antitumor activity in the tumor microenvironment (TME). In culture, BPTF suppresses direct natural cytotoxicity receptor (NCR) mediated NK cell cytolytic activity to mouse and human cancer cell lines, demonstrating conserved functions. Blocking mouse NCR1 in vivo rescues BPTF KD tumor weights, demonstrating its importance for the control of tumor growth. We discovered that BPTF occupies heparanase (Hpse) regulatory elements, activating its expression. Increased heparanase activity results in reduced cell surface abundance of the NCR co-ligands: heparan sulfate proteoglycans (HSPGs). Using gain and loss of function approaches we show that elevated heparanase levels suppress NK cell cytolytic activity to tumor cells in culture. These results suggest that BPTF activates heparanase expression, which in turn reduces cell surface HSPGs and NCR co-ligands, inhibiting NK cell activity. Furthermore, gene expression data from human breast cancer tumors shows that elevated BPTF expression correlates with reduced antitumor immune cell signatures, supporting conserved roles for BPTF in suppressing antitumor immunity. Conditional BPTF depletion in established mouse breast tumors enhances antitumor immunity, suggesting that inhibiting BPTF could provide a novel immunotherapy.

  • FC/FACS
  • Mus musculus (House mouse)

Ncf1 affects osteoclast formation but is not critical for postmenopausal bone loss.

In BMC Musculoskeletal Disorders on 9 November 2016 by Stubelius, A., Andersson, A., et al.

Increased reactive oxygen species and estrogen deficiency contribute to the pathophysiology of postmenopausal osteoporosis. Reactive oxygen species contribute to bone degradation and is necessary for RANKL-induced osteoclast differentiation. In postmenopausal bone loss, reactive oxygen species can also activate immune cells to further enhance bone resorption. Here, we investigated the role of reactive oxygen species in ovariectomy-induced osteoporosis in mice deficient in Ncf1, a subunit for the NADPH oxidase 2 and a well-known regulator of the immune system.
B10.Q wild-type (WT) mice and mice with a spontaneous point mutation in the Ncf1-gene (Ncf1*/*) were ovariectomized (ovx) or sham-operated. After 4 weeks, osteoclasts were generated ex vivo, and bone mineral density was measured using peripheral quantitative computed tomography. Lymphocyte populations, macrophages, pre-osteoclasts and intracellular reactive oxygen species were analyzed by flow cytometry.
After ovx, Ncf1*/*-mice formed fewer osteoclasts ex vivo compared to WT mice. However, trabecular bone mineral density decreased similarly in both genotypes after ovx. Ncf1*/*-mice had a larger population of pre-osteoclasts, whereas lymphocytes were activated to the same extent in both genotypes.
Ncf1*/*-mice develop fewer osteoclasts after ovx than WT mice. However, irrespective of genotype, bone mineral density decreases after ovx, indicating that a compensatory mechanism retains bone degradation after ovx.

  • Mus musculus (House mouse)

Protective role of nuclear factor of activated T cells 2 in CD8+ long-lived memory T cells in an allergy model.

In The Journal of Allergy and Clinical Immunology on 1 April 2008 by Karwot, R., Maxeiner, J. H., et al.

The transcriptional regulation of cytokines released and controlled by memory T cells is not well understood. Defective IFN-gamma production in allergic asthma correlates in human beings with the risk of wheezing in childhood.
To understand the role of the transcription factor nuclear factor of activated T cells 2 (NFATc2) in memory and effector T cells in the airways in experimental allergic asthma.
We used murine models of allergic asthma and adoptive cell transfer of fluorescence-activated sorted cells in a disease model.
Mice lacking NFATc2 developed an increase in airwayhyperresponsiveness (AHR), remodeling, and serum IgE levelson ovalbumin sensitization. This phenotype was associated withCD81CD1222 T cells deficient in IFN-g production in theairways. The origin of this phenotype in NFATc2(2/2) mice wasrelated to an expanded population of lung CD81CD1221(IL-2Rb chain) CD127hi (IL-7 receptor [R] a chain1) long-livedmemory cells. Adoptive transfer of ovalbumin-specific CD81NFATc2(2/2) T cells enhanced the AHR generated byNFATc2(2/2) CD41 T cells in immunodeficient mice, increasedIL-17, and reduced IFN-g production in the reconstituted mice. Depletion of the memory CD81CD1221IL-7Rhigh T-cellpopulation corrected the defect in IFN-g production by lungNFATc2(2/2) CD81CD1222 cells and abrogated the increasedAHR observed in NFATc2(2/2) CD81 T-cell-reconstituted micewith a severe combined immunodeficiency disorder.
Taken together, our results suggest that NFATc2 expression in long-lived memory CD8+ T cells controls IL-2 and IFN-gamma production in lung CD8+ T cells, which then limits TH17 and TH2 development in the airways during allergen challenge.

  • Immunology and Microbiology
View this product on CiteAb