Product Citations: 3

Mapping the biogenesis of forward programmed megakaryocytes from induced pluripotent stem cells.

In Science Advances on 18 February 2022 by Lawrence, M., Shahsavari, A., et al.

Platelet deficiency, known as thrombocytopenia, can cause hemorrhage and is treated with platelet transfusions. We developed a system for the production of platelet precursor cells, megakaryocytes, from pluripotent stem cells. These cultures can be maintained for >100 days, implying culture renewal by megakaryocyte progenitors (MKPs). However, it is unclear whether the MKP state in vitro mirrors the state in vivo, and MKPs cannot be purified using conventional surface markers. We performed single-cell RNA sequencing throughout in vitro differentiation and mapped each state to its equivalent in vivo. This enabled the identification of five surface markers that reproducibly purify MKPs, allowing us insight into their transcriptional and epigenetic profiles. Last, we performed culture optimization, increasing MKP production. Together, this study has mapped parallels between the MKP states in vivo and in vitro and allowed the purification of MKPs, accelerating the progress of in vitro-derived transfusion products toward the clinic.

  • Homo sapiens (Human)
  • Stem Cells and Developmental Biology

Mapping Human Hematopoietic Hierarchy at Single Cell Resolution by Microwell-seq

Preprint on BioRxiv : the Preprint Server for Biology on 13 April 2017 by Lai, S., Xu, Y., et al.

h4>Summary/h4> The classical hematopoietic hierarchy, which is mainly built with fluorescence-activated cell sorting (FACS) technology, proves to be inaccurate in recent studies. Single cell RNA-seq (scRNA-seq) analysis provides a solution to overcome the limit of FACS-based cell type definition system for the dissection of complex cellular hierarchy. However, large-scale scRNA-seq is constrained by the throughput and cost of traditional methods. Here, we developed Microwell-seq, a high-throughput and low-cost scRNA-seq platform using extremely simple devices. Using Microwell-seq, we constructed a single-cell resolution transcriptome atlas of human hematopoietic differentiation hierarchy by profiling more than 50,000 single cells throughout adult human hematopoietic system. We found that adult human hematopoietic stem and progenitor cell (HSPC) compartment is dominated by progenitors primed with lineage specific regulators. Our analysis revealed differentiation pathways for each cell types, through which HSPCs directly progress to lineage biased progenitors before differentiation. We propose a revised adult human hematopoietic hierarchy independent of oligopotent progenitors. Our study also demonstrates the broad applicability of Microwell-seq technology.

Variability in induced pluripotent stem cell (iPSC) lines remains a concern for disease modeling and regenerative medicine. We have used RNA-sequencing analysis and linear mixed models to examine the sources of gene expression variability in 317 human iPSC lines from 101 individuals. We found that ∼50% of genome-wide expression variability is explained by variation across individuals and identified a set of expression quantitative trait loci that contribute to this variation. These analyses coupled with allele-specific expression show that iPSCs retain a donor-specific gene expression pattern. Network, pathway, and key driver analyses showed that Polycomb targets contribute significantly to the non-genetic variability seen within and across individuals, highlighting this chromatin regulator as a likely source of reprogramming-based variability. Our findings therefore shed light on variation between iPSC lines and illustrate the potential for our dataset and other similar large-scale analyses to identify underlying drivers relevant to iPSC applications.
Copyright © 2016 Elsevier Inc. All rights reserved.

  • Biochemistry and Molecular biology
  • Genetics
  • Stem Cells and Developmental Biology
View this product on CiteAb