Product Citations: 8

Cervical mucosal inflammation expands functional polymorphonuclear myeloid-derived suppressor cells

Preprint on MedRxiv : the Preprint Server for Health Sciences on 10 July 2024 by Pieren, D. K., Benítez-Martínez, A., et al.

The mucosal immune system plays a fundamental role in maintaining microbial balance. Microbial imbalance in the female genital tract increases the risk for adverse health outcomes in women and may increase susceptibility to genital tract infections. Among different relevant immune subsets, myeloid-derived suppressor cells (MDSCs) remain understudied in the context of female genital tract conditions. Here we show that frequency of polymorphonuclear (PMN-) MDSCs increased in the cervical mucosa of women with Chlamydia trachomatis , bacterial vaginosis, or with a coinfection, but not in women with human papillomavirus. Mucosal PMN-MDSC frequencies correlated with mucosal IL-1β in C. trachomatis patients and ex vivo exposure of cervical tissue to C. trachomatis elevated both PMN-MDSC frequencies and IL-1β secretion. Likewise, exposure of cervical tissue to cervicovaginal lavage fluid from C. trachomatis and bacterial vaginosis patients also enhanced PMN-MDSC frequencies. Lastly, cervical MDSCs expressed suppressive mediators and functionally suppressed cytotoxic T-cell responses. Our study identifies IL-1β-stimulated PMN-MDSCs as an immune suppressive mediator in female genital tract infections, potentially contributing to susceptibility to acquiring secondary infections at this site.

  • Immunology and Microbiology

Comprehensive Flow Cytometric, Immunohistologic, and Molecular Assessment of Thymus Function in Rhesus Macaques.

In ImmunoHorizons on 1 July 2024 by Hale, L. P., Macintyre, A. N., et al.

The critical importance of the thymus for generating new naive T cells that protect against novel infections and are tolerant to self-antigens has led to a recent revival of interest in monitoring thymic function in species other than humans and mice. Nonhuman primates such as rhesus macaques (Macaca mulatta) provide particularly useful animal models for translational research in immunology. In this study, we tested the performance of a 15-marker multicolor Ab panel for flow cytometric phenotyping of lymphocyte subsets directly from rhesus whole blood, with validation by thymectomy and T cell depletion. Immunohistochemical and multiplex RNA expression analysis of thymus tissue biopsies and molecular assays on PBMCs were used to further validate thymus function. Results identify Ab panels that can accurately classify rhesus naive T cells (CD3+CD45RA+CD197+ or CD3+CD28+CD95-) and recent thymic emigrants (CD8+CD28+CD95-CD103+CD197+) using just 100 µl of whole blood and commercially available fluorescent Abs. An immunohistochemical panel reactive with pan-cytokeratin (CK), CK14, CD3, Ki-67, CCL21, and TdT provides histologic evidence of thymopoiesis from formalin-fixed, paraffin-embedded thymus tissues. Identification of mRNAs characteristic of both functioning thymic epithelial cells and developing thymocytes and/or molecular detection of products of TCR gene rearrangement provide additional complementary methods to evaluate thymopoiesis, without requiring specific Abs. Combinations of multiparameter flow cytometry, immunohistochemistry, multiplex gene expression, and TCR excision circle assays can comprehensively evaluate thymus function in rhesus macaques while requiring only minimal amounts of peripheral blood or biopsied thymus tissue.
Copyright © 2024 The Authors.

  • Macaca mulatta (Rhesus Monkey)

Resident memory T cells (TRM) present at the respiratory tract may be essential to enhance early SARS-CoV-2 viral clearance, thus limiting viral infection and disease. While long-term antigen-specific TRM are detectable beyond 11 months in the lung of convalescent COVID-19 patients, it is unknown if mRNA vaccination encoding for the SARS-CoV-2 S-protein can induce this frontline protection. Here we show that the frequency of CD4+ T cells secreting IFNγ in response to S-peptides is variable but overall similar in the lung of mRNA-vaccinated patients compared to convalescent-infected patients. However, in vaccinated patients, lung responses present less frequently a TRM phenotype compared to convalescent infected individuals and polyfunctional CD107a+ IFNγ+ TRM are virtually absent in vaccinated patients. These data indicate that mRNA vaccination induces specific T cell responses to SARS-CoV-2 in the lung parenchyma, although to a limited extend. It remains to be determined whether these vaccine-induced responses contribute to overall COVID-19 control.
© 2023. The Author(s).

  • FC/FACS
  • COVID-19
  • Genetics
  • Immunology and Microbiology

Post SARS-CoV-2 cell mediated Immune profiles; Case studies

Preprint on MedRxiv : the Preprint Server for Health Sciences on 5 July 2022 by Singh, R., Ravichandiran, V., et al.

Cell-mediated immunity (CMI), which includes T-cells (both T helper and cytotoxic), is critical for effective antiviral defenses against coronavirus disease-2019 (COVID-19). To better understand the immunological characteristics of CD markers on T-cells in post-COVID-19 patients, we investigated the expression of differential CD markers in the patient groups in this study. Flow cytometry was used to quantify total lymphocyte count and assess the levels of expression of CD markers in the samples. The percentage of Lymphocytes decreased significantly in the post-SARS-COV-2 patients in comparison to normal subjects, which is usually happening in any viral infection. In contrast to that, expression of CD8 was increased in the patient group having long SARS-COV-2 infection with comorbid complications with respect to the normal individuals and long SARS-COV-2 infection without comorbid complications. This data revealed that the cellular immunological responses corroborated with an earlier report of COVID-19 infection were mediated by CD8 upregulation and cytotoxic T lymphocyte hyperactivation.

  • COVID-19
  • Immunology and Microbiology

NK/T-cell neoplasms are rare, highly aggressive, and insensitive to chemotherapy. These lymphomas have a poor prognosis, with patients being vulnerable to relapse. Hence, there is a need for alternative treatments. The purpose of this study is to investigate whether anti-PD1 takes effect on NK/T cell lymphoma.
The expression of PD-L1 in NK/T cell lines was investigated by flow cytometry and by Western blot. In vivo, overall survival and median survival time of mice bearing an NK/T cell line tumor was assessed. Tumor-infiltrating T cells and monocyte-derived suppressor cells were evaluated by flow cytometry. Levels of PD-L1 and components of the JAK-STAT pathway were assessed in tumor tissues by immunohistochemistry.
NK/T cell lines had greater expression of PD-L1 than normal peripheral blood human NK cells. In vivo, anti-PD1 treatment improved overall survival and median survival time of mice bearing an NK/T cell line. Furthermore, anti-PD1 treatment increased levels of PD-L1. Cultured tumor-infiltrating lymphocytes from mice treated with anti-PD1 had greater levels of IFN-γ than cultured lymphocytes from untreated animals. Further, levels of JAK2 and STAT1 were greater in mice treated with anti-PD1.
In vivo, anti-PD1 inhibited the progression of an NK/T-cell lymphoma and up-regulated PD-L1 expression. This up-regulation may be through the IFN-γ-associated JAK-STAT pathway.

  • FC/FACS
  • Mus musculus (House mouse)
  • Cancer Research
  • Immunology and Microbiology
View this product on CiteAb