Product Citations: 4

Single-cell characterization of anti-LAG-3 and anti-PD-1 combination treatment in patients with melanoma.

In The Journal of Clinical Investigation on 15 March 2023 by Huuhtanen, J., Kasanen, H., et al.

BackgroundRelatlimab plus nivolumab (anti-lymphocyte-activation gene 3 plus anti-programmed death 1 [anti-LAG-3+anti-PD-1]) has been approved by the FDA as a first-line therapy for stage III/IV melanoma, but its detailed effect on the immune system is unknown.MethodsWe evaluated blood samples from 40 immunotherapy-naive or prior immunotherapy-refractory patients with metastatic melanoma treated with anti-LAG-3+anti-PD-1 in a phase I trial using single-cell RNA and T cell receptor sequencing (scRNA+TCRαβ-Seq) combined with other multiomics profiling.ResultsThe highest LAG3 expression was noted in NK cells, Tregs, and CD8+ T cells, and these cell populations underwent the most significant changes during the treatment. Adaptive NK cells were enriched in responders and underwent profound transcriptomic changes during the therapy, resulting in an active phenotype. LAG3+ Tregs expanded, but based on the transcriptome profile, became metabolically silent during the treatment. Last, higher baseline TCR clonality was observed in responding patients, and their expanding CD8+ T cell clones gained a more cytotoxic and NK-like phenotype.ConclusionAnti-LAG-3+anti-PD-1 therapy has profound effects on NK cells and Tregs in addition to CD8+ T cells.Trial registrationClinicalTrials.gov (NCT01968109)FundingCancer Foundation Finland, Sigrid Juselius Foundation, Signe and Ane Gyllenberg Foundation, Relander Foundation, State funding for university-level health research in Finland, a Helsinki Institute of Life Sciences Fellow grant, Academy of Finland (grant numbers 314442, 311081, 335432, and 335436), and an investigator-initiated research grant from BMS.

  • Homo sapiens (Human)
  • Cancer Research

Peptide-loaded Major Histocompatibility Complex (pMHC) class I molecules can be expressed in a single chain trimeric (SCT) format, composed of a specific peptide fused to the light chain beta-2 microglobulin (β2m) and MHC class I heavy chain (HC) by flexible linker peptides. pMHC SCTs have been used as effective molecular tools to investigate cellular immunity and represent a promising vaccine platform technology, due to their intracellular folding and assembly which is apparently independent of host cell folding pathways and chaperones. However, certain MHC class I HC molecules, such as the Human Leukocyte Antigen B27 (HLA-B27) allele, present a challenge due to their tendency to form HC aggregates. We constructed a series of single chain trimeric molecules to determine the behaviour of the HLA-B27 HC in a scenario that usually allows for efficient MHC class I molecule folding. When stably expressed, a pMHC SCT incorporating HLA-B27 HC formed chaperone-bound homodimers within the endoplasmic reticulum (ER). A series of HLA-B27 SCT substitution mutations revealed that the F pocket and antigen binding groove regions of the HLA-B27 HC defined the folding and dimerisation of the single chain complex, independently of the peptide sequence. Furthermore, pMHC SCTs can demonstrate variability in their association with the intracellular antigen processing machinery.
Copyright © 2022 Lenart, Truong, Nguyen, Rasiukienė, Tsao, Armstrong, Kumar, McHugh, Pereira, Maan, Garstka, Bowness, Blake, Powis, Gould, Nesbeth and Antoniou.

  • Immunology and Microbiology

Integrated Analysis of the Pancreas and Islets Reveals Unexpected Findings in Human Male With Type 1 Diabetes.

In Journal of the Endocrine Society on 1 December 2021 by Haliyur, R., Walker, J. T., et al.

Clinical and pathologic heterogeneity in type 1 diabetes is increasingly being recognized. Findings in the islets and pancreas of a 22-year-old male with 8 years of type 1 diabetes were discordant with expected results and clinical history (islet autoantibodies negative, hemoglobin A1c 11.9%) and led to comprehensive investigation to define the functional, molecular, genetic, and architectural features of the islets and pancreas to understand the cause of the donor's diabetes. Examination of the donor's pancreatic tissue found substantial but reduced β-cell mass with some islets devoid of β cells (29.3% of 311 islets) while other islets had many β cells. Surprisingly, isolated islets from the donor pancreas had substantial insulin secretion, which is uncommon for type 1 diabetes of this duration. Targeted and whole-genome sequencing and analysis did not uncover monogenic causes of diabetes but did identify high-risk human leukocyte antigen haplotypes and a genetic risk score suggestive of type 1 diabetes. Further review of pancreatic tissue found islet inflammation and some previously described α-cell molecular features seen in type 1 diabetes. By integrating analysis of isolated islets, histological evaluation of the pancreas, and genetic information, we concluded that the donor's clinical insulin deficiency was most likely the result autoimmune-mediated β-cell loss but that the constellation of findings was not typical for type 1 diabetes. This report highlights the pathologic and functional heterogeneity that can be present in type 1 diabetes.
© The Author(s) 2021. Published by Oxford University Press on behalf of the Endocrine Society.

  • FC/FACS
  • Homo sapiens (Human)

The costimulatory receptor 4-1BB is expressed on activated immune cells, including activated T cells. Antibodies targeting 4-1BB enhance the proliferation and survival of antigen-stimulated T cells in vitro and promote CD8 T cell-dependent anti-tumor immunity in pre-clinical cancer models. We found that T regulatory (Treg) cells infiltrating human or murine tumors expressed high amounts of 4-1BB. Intra-tumoral Treg cells were preferentially depleted by anti-4-1BB mAbs in vivo. Anti-4-1BB mAbs also promoted effector T cell agonism to promote tumor rejection. These distinct mechanisms were competitive and dependent on antibody isotype and FcγR availability. Administration of anti-4-1BB IgG2a, which preferentially depletes Treg cells, followed by either agonistic anti-4-1BB IgG1 or anti-PD-1 mAb augmented anti-tumor responses in multiple solid tumor models. An antibody engineered to optimize both FcγR-dependent Treg cell depleting capacity and FcγR-independent agonism delivered enhanced anti-tumor therapy. These insights into the effector mechanisms of anti-4-1BB mAbs lay the groundwork for translation into the clinic.
Copyright © 2018 Elsevier Inc. All rights reserved.

  • Cancer Research
  • Immunology and Microbiology
View this product on CiteAb