Product Citations: 8

Anti-sense oligonucleotides (ASOs) are modified synthetic single-stranded molecules with enhanced stability, activity, and bioavailability. They associate with RNA through sequence complementarity and can reduce or alter mRNA expression upon binding of splice site positions. To target RNA in the nucleus or cytoplasm, ASOs must cross membranes, a poorly understood process. We performed an unbiased CRISPR/Cas9 knockout screen with a genetic splice reporter to identify genes that can increase or decrease ASO activity, resulting in the most comprehensive catalog of ASO-activity modifier genes. Here we reveal distinct targets, including AP1M1 and TBC1D23, linking ASO activity to transport of cargo between the Golgi and endosomes. AP1M1 absence strongly increases ASO activity by delaying endosome-to-lysosome transport in vitro and in vivo. Prolonged ASO residence time in the endosomal system may increase the likelihood of ASO escape. This insight into AP1M1 role in ASO trafficking suggests a way for enhancing the therapeutic efficacy of ASOs by manipulating the endolysosomal pathways.
© 2025. The Author(s).

  • Homo sapiens (Human)
  • Cell Biology

A CRISPR/Cas9 screen reveals proteins at the endosome-Golgi interface that modulate cellular ASO activity

Preprint on BioRxiv : the Preprint Server for Biology on 18 December 2024 by Malong, L., Roskosch, J., et al.

Anti-sense oligonucleotides (ASOs) are modified synthetic single-stranded molecules with enhanced stability, activity, and bioavailability. They associate with RNA through sequence complementarity and can reduce or alter mRNA expression upon binding of splice site positions. To target RNA in the nucleus or cytoplasm, ASOs must cross membranes, a poorly understood process. We have performed an unbiased CRISPR/Cas9 knockout screen with a genetic splice reporter to identify genes that can increase or decrease ASOs activity, resulting in the most comprehensive catalog of ASOs-activity modifier genes. Distinct targets were uncovered, including AP1M1 and TBC1D23, linking ASOs activity to transport of cargo between the Golgi and endosomes. AP1M1 absence strongly increased ASO activity by delaying endosome-to-lysosome transport in vitro and in vivo . Prolonged ASOs residence time in the endosomal system may increase the likelihood of ASOs escape from this organelle before they reach lysosomes. This insight into AP1M1 role in ASOs trafficking suggests a way for enhancing the therapeutic efficacy of ASOs by manipulating the endolysosomal pathways.

  • FC/FACS
  • Cell Biology

Deep learning and CRISPR-Cas13d ortholog discovery for optimized RNA targeting.

In Cell Systems on 20 December 2023 by Wei, J., Lotfy, P., et al.

Effective and precise mammalian transcriptome engineering technologies are needed to accelerate biological discovery and RNA therapeutics. Despite the promise of programmable CRISPR-Cas13 ribonucleases, their utility has been hampered by an incomplete understanding of guide RNA design rules and cellular toxicity resulting from off-target or collateral RNA cleavage. Here, we quantified the performance of over 127,000 RfxCas13d (CasRx) guide RNAs and systematically evaluated seven machine learning models to build a guide efficiency prediction algorithm orthogonally validated across multiple human cell types. Deep learning model interpretation revealed preferred sequence motifs and secondary features for highly efficient guides. We next identified and screened 46 novel Cas13d orthologs, finding that DjCas13d achieves low cellular toxicity and high specificity-even when targeting abundant transcripts in sensitive cell types, including stem cells and neurons. Our Cas13d guide efficiency model was successfully generalized to DjCas13d, illustrating the power of combining machine learning with ortholog discovery to advance RNA targeting in human cells.
Copyright © 2023. Published by Elsevier Inc.

  • Homo sapiens (Human)
  • Genetics

Circulating ACE2-expressing extracellular vesicles block broad strains of SARS-CoV-2.

In Nature Communications on 20 January 2022 by El-Shennawy, L., Hoffmann, A. D., et al.

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused the pandemic of the coronavirus induced disease 2019 (COVID-19) with evolving variants of concern. It remains urgent to identify novel approaches against broad strains of SARS-CoV-2, which infect host cells via the entry receptor angiotensin-converting enzyme 2 (ACE2). Herein, we report an increase in circulating extracellular vesicles (EVs) that express ACE2 (evACE2) in plasma of COVID-19 patients, which levels are associated with severe pathogenesis. Importantly, evACE2 isolated from human plasma or cells neutralizes SARS-CoV-2 infection by competing with cellular ACE2. Compared to vesicle-free recombinant human ACE2 (rhACE2), evACE2 shows a 135-fold higher potency in blocking the binding of the viral spike protein RBD, and a 60- to 80-fold higher efficacy in preventing infections by both pseudotyped and authentic SARS-CoV-2. Consistently, evACE2 protects the hACE2 transgenic mice from SARS-CoV-2-induced lung injury and mortality. Furthermore, evACE2 inhibits the infection of SARS-CoV-2 variants (α, β, and δ) with equal or higher potency than for the wildtype strain, supporting a broad-spectrum antiviral mechanism of evACE2 for therapeutic development to block the infection of existing and future coronaviruses that use the ACE2 receptor.
© 2022. The Author(s).

  • FC/FACS
  • COVID-19

Deep learning and CRISPR-Cas13d ortholog discovery for optimized RNA targeting

Preprint on BioRxiv : the Preprint Server for Biology on 14 September 2021 by Wei, J., Lotfy, P., et al.

Transcriptome engineering technologies that can effectively and precisely perturb mammalian RNAs are needed to accelerate biological discovery and RNA therapeutics. However, the broad utility of programmable CRISPR-Cas13 ribonucleases has been hampered by an incomplete understanding of the design rules governing guide RNA activity as well as cellular toxicity resulting from off-target or collateral RNA cleavage. Here, we sought to characterize and develop Cas13d systems for efficient and specific RNA knockdown with low cellular toxicity in human cells. We first quantified the performance of over 127,000 RfxCas13d (CasRx) guide RNAs in the largest-scale screen to date and systematically evaluated three linear, two ensemble, and two deep learning models to build a guide efficiency prediction algorithm validated across multiple human cell types in orthogonal secondary screens ( https://www.RNAtargeting.org ). Deep learning model interpretation revealed specific sequence motifs at spacer position 15-24 along with favored secondary features for highly efficient guides. We next identified 46 novel Cas13d orthologs through metagenomic mining for activity screening, discovering that the metagenome-derived DjCas13d ortholog achieves low cellular toxicity and high transcriptome-wide specificity when deployed against high abundance transcripts or in sensitive cell types, including hESCs. Finally, our Cas13d guide efficiency model successfully generalized to DjCas13d, highlighting the utility of a comprehensive approach combining machine learning with ortholog discovery to advance RNA targeting in human cells.

  • Genetics
View this product on CiteAb