Product Citations: 3

NME1 Drives Expansion of Melanoma Cells with Enhanced Tumor Growth and Metastatic Properties.

In Molecular Cancer Research on 1 August 2019 by Wang, Y., Leonard, M. K., et al.

Melanoma is a lethal skin cancer prone to progression and metastasis, and resistant to therapy. Metastasis and therapy resistance of melanoma and other cancers are driven by tumor cell plasticity, largely via acquisition/loss of stem-like characteristics and transitions between epithelial and mesenchymal phenotypes (EMT/MET). NME1 is a metastasis suppressor gene that inhibits metastatic potential when its expression is enforced in melanoma and other cancers. Herein, we have unmasked a novel role for NME1 as a driver of melanoma growth distinct from its canonical function as a metastasis suppressor. NME1 promotes expansion of stem-like melanoma cells that exhibit elevated expression of stem cell markers (e.g., Sox2, Sox10, Oct-4, KLF4, and Ccnb-1), enhanced growth as melanoma spheres in culture, and enhanced tumor growth and lung colonizing activities in vivo. In contrast, NME1 expression did not affect the proliferation of melanoma cell lines in monolayer culture conditions. Silencing of NME1 expression resulted in a dramatic reduction in melanoma sphere size, and impaired tumor growth and metastatic activities of melanoma sphere cells when xenografted in immunocompromised mice. Individual cells within melanoma sphere cultures displayed a wide range of NME1 expression across multiple melanoma cell lines. Cell subpopulations with elevated NME1 expression were fast cycling and displayed enhanced expression of stem cell markers. IMPLICATIONS: Our findings suggest the current model of NME1 as a metastasis-suppressing factor requires refinement, bringing into consideration its heterogeneous expression within melanoma sphere cultures and its novel role in promoting the expansion and tumorigenicity of stem-like cells.
©2019 American Association for Cancer Research.

  • FC/FACS
  • Mus musculus (House mouse)
  • Cancer Research

Opposing roles of IgM and IgD in BCR-induced B-cell survival.

In Genes To Cells : Devoted To Molecular Cellular Mechanisms on 1 October 2018 by Yasuda, S., Sun, J., et al.

The B-cell receptor (BCR) transmits a tonic survival signal in the absence of antigen stimulation and an antigen-triggered survival signal. Mature B cells express two types of BCR, IgM and IgD, but it remains unclear how B-cell survival is differentially regulated by these two receptors. We found that, whereas cross-linking IgM on spleen B cells greatly enhanced their survival, cross-linking IgD did not enhance, but rather decreased, their survival. Consistently, cross-linking both IgM and IgD only moderately enhanced B-cell survival, suggesting that IgM and IgD play opposing roles in B-cell survival induced by BCR stimulation. Based on these and additional experimental results, we present a mathematical model integrating IgM- and IgD-mediated survival signals. Our model shows that IgD can transmit a tonic survival signal in the absence of antigen stimulation but cross-linking IgD not only does not generate a survival signal but also disrupts its tonic signal, resulting in inhibition of B-cell survival. These results suggest that IgD attenuates BCR-induced survival in mature B cells, presumably to restrain B-cell response to weak and/or self-antigens and prevent nonspecific B-cell activation and autoimmunity.
© 2018 Molecular Biology Society of Japan and John Wiley & Sons Australia, Ltd.

  • Immunology and Microbiology

Antibody-mediated rejection is currently the leading cause of transplant failure. Prevailing dogma predicts that B cells differentiate into anti-donor-specific antibody (DSA)-producing plasma cells only with the help of CD4+ T cells. Yet, previous studies have shown that dependence on helper T cells decreases when high amounts of protein antigen are recruited to the spleen, two conditions potentially met by organ transplantation. This could explain why a significant proportion of transplant recipients develop DSA despite therapeutic immunosuppression. Using murine models, we confirmed that heart transplantation, but not skin grafting, is associated with accumulation of a high quantity of alloantigens in recipients' spleen. Nevertheless, neither naive nor memory DSA responses could be observed after transplantation of an allogeneic heart into recipients genetically deficient for CD4+ T cells. These findings suggest that DSA generation rather result from insufficient blockade of the helper function of CD4+ T cells by therapeutic immunosuppression. To test this second theory, different subsets of circulating T cells: CD8+, CD4+, and T follicular helper [CD4+CXCDR5+, T follicular helper cells (Tfh)], were analyzed in 9 healthy controls and 22 renal recipients. In line with our hypothesis, we observed that triple maintenance immunosuppression (CNI + MMF + steroids) efficiently blocked activation-induced upregulation of CD25 on CD8+, but not on CD4+ T cells. Although the level of expression of CD40L and ICOS was lower on activated Tfh of immunosuppressed patients, the percentage of CD40L-expressing Tfh was the same than control patients, as was Tfh production of IL21. Induction therapy with antithymocyte globulin (ATG) resulted in prolonged depletion of Tfh and reduction of CD4+ T cells number with depleting monoclonal antibody in murine model resulted in exponential decrease in DSA titers. Furthermore, induction with ATG also had long-term beneficial influence on Tfh function after immune reconstitution. We conclude that CD4+ T cell help is mandatory for naive and memory DSA responses, making Tfh cells attractive targets for improving the prevention of DSA generation and to prolong allograft survival. Waiting for innovative treatments to be translated into the clinical field ATG induction seems to currently offer the best clinical prospect to achieve this goal.

  • Immunology and Microbiology
View this product on CiteAb