Product Citations: 4

CD28 and CD57 define four populations with distinct phenotypic properties within human CD8+ T cells.

In European Journal of Immunology on 1 March 2020 by Pangrazzi, L., Reidla, J., et al.

After repeated antigen exposure, both memory and terminally differentiated cells can be generated within CD8+ T cells. Although, during their differentiation, activated CD8+ T cells may first lose CD28, and CD28- cells may eventually express CD57 as a subsequent step, a population of CD28+ CD57+ (DP) CD8+ T cells can be identified in the peripheral blood. How this population is distinct from CD28- CD57- (DN) CD8+ T cells, and from the better characterized non-activated/early-activated CD28+ CD57- and senescent-like CD28- CD57+ CD8+ T cell subsets is currently unknown. Here, RNA expression of the four CD8+ T cell subsets isolated from human PBMCs was analyzed using microarrays. DN cells were more similar to "early" highly differentiated cells, with decreased TNF and IFN-γ production, impaired DNA damage response and apoptosis. Conversely, increased apoptosis and expression of cytokines, co-inhibitory, and chemokine receptors were found in DP cells. Higher levels of DP CD8+ T cells were observed 7 days after Hepatitis B vaccination, and decreased levels of DP cells were found in rheumatoid arthritis patients. More DP and DN CD8+ T cells were present in the bone marrow, in comparison with PBMCs. In summary, our results indicate that DP and DN cells are distinct CD8+ T cell subsets displaying defined properties.
© 2019 The Authors. European Journal of Immunology published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  • Immunology and Microbiology

CD161 contributes to prenatal immune suppression of IFNγ-producing PLZF+ T cells.

In The Journal of Clinical Investigation on 30 May 2019 by Halkias, J., Rackaityte, E., et al.

While the human fetal immune system defaults to a program of tolerance, there is concurrent need for protective immunity to meet the antigenic challenges encountered after birth. Activation of T cells in utero is associated with the fetal inflammatory response with broad implications for the health of the fetus and of the pregnancy. However, the characteristics of the fetal effector T cells that contribute to this process are largely unknown.
We analyzed primary human fetal lymphoid and mucosal tissues and performed phenotypic, functional, and transcriptional analysis to identify T cells with pro-inflammatory potential. The frequency and function of fetal-specific effector T cells was assessed in the cord blood of infants with localized and systemic inflammatory pathologies and compared to healthy term controls.
We identified a transcriptionally distinct population of CD4+ T cells characterized by expression of the transcription factor Promyelocytic Leukemia Zinc Finger (PLZF). PLZF+ CD4+ T cells were specifically enriched in the fetal intestine, possessed an effector memory phenotype, and rapidly produced pro-inflammatory cytokines. Engagement of the C-type lectin CD161 on these cells inhibited TCR-dependent production of IFNγ in a fetal-specific manner. IFNγ-producing PLZF+ CD4+ T cells were enriched in the cord blood of infants with gastroschisis, a natural model of chronic inflammation originating from the intestine, as well as in preterm birth, suggesting these cells contribute to fetal systemic immune activation.
Our work reveals a fetal-specific program of protective immunity whose dysregulation is associated with fetal and neonatal inflammatory pathologies.

  • FC/FACS
  • Homo sapiens (Human)
  • Immunology and Microbiology

Due to their immunoregulatory properties, several specialized cell subsets, including regulatory T (Treg), invariant natural killer T (iNKT) and regulatory B (Breg) cells, are involved in the pathogenesis of non-Hodgkin lymphoma (NHL). However, the interaction between various cells remains to be elucidated. The aim of the present study was to evaluate the levels of Treg, iNKT and Breg cell subsets and their interrelationships in the peripheral blood (PB) and bone marrow (BM) of patients with B-cell NHL who received rituximab-based regimens and achieved a complete remission. A total of 20 patients and 20 healthy age- and sex-matched controls were prospectively enrolled for investigation of Treg, iNKT and Breg cell subsets in PB and BM by flow cytometry and cell culture. Prior to administration of combination chemotherapy with rituximab, the patients had lower levels of Breg cells and, to a lesser degree, Treg cells, but not iNKT cells, in PB compared with controls. Compartmental differences in the levels of Treg and Breg cell subsets, but not iNKT cells, were observed between PB and BM, suggesting an increase in trafficking through the blood of these regulatory cell subsets to the marrow. Following complete remission, the levels of circulating Treg, iNKT and Breg cell subsets increased. The levels of Treg cells were not significantly associated with iNKT and Breg cell subsets, although negative correlations were observed. Taken together, these results may provide new insights into the potential role of regulatory cell subsets in patients with B-cell NHL. However, whether the observed differences between PB and BM may affect clinical outcomes requires further investigation.

  • Homo sapiens (Human)
  • Cancer Research
  • Immunology and Microbiology

Immune Checkpoint Blockade Restores HIV-Specific CD4 T Cell Help for NK Cells.

In The Journal of Immunology on 1 August 2018 by Porichis, F., Hart, M. G., et al.

Immune exhaustion is an important feature of chronic infections, such as HIV, and a barrier to effective immunity against cancer. This dysfunction is in part controlled by inhibitory immune checkpoints. Blockade of the PD-1 or IL-10 pathways can reinvigorate HIV-specific CD4 T cell function in vitro, as measured by cytokine secretion and proliferative responses upon Ag stimulation. However, whether this restoration of HIV-specific CD4 T cells can improve help to other cell subsets impaired in HIV infection remains to be determined. In this study, we examine a cohort of chronically infected subjects prior to initiation of antiretroviral therapy (ART) and individuals with suppressed viral load on ART. We show that IFN-γ induction in NK cells upon PBMC stimulation by HIV Ag varies inversely with viremia and depends on HIV-specific CD4 T cell help. We demonstrate in both untreated and ART-suppressed individuals that dual PD-1 and IL-10 blockade enhances cytokine secretion of NK cells via restored HIV-specific CD4 T cell function, that soluble factors contribute to these immunotherapeutic effects, and that they depend on IL-2 and IL-12 signaling. Importantly, we show that inhibition of the PD-1 and IL-10 pathways also increases NK degranulation and killing of target cells. This study demonstrates a previously underappreciated relationship between CD4 T cell impairment and NK cell exhaustion in HIV infection, provides a proof of principle that reversal of adaptive immunity exhaustion can improve the innate immune response, and suggests that immune checkpoint modulation that improves CD4/NK cell cooperation can be used as adjuvant therapy in HIV infection.
Copyright © 2018 by The American Association of Immunologists, Inc.

  • Immunology and Microbiology
View this product on CiteAb