Product Citations: 8

Intestinal fungi are causally implicated in microbiome assembly and immune development in mice.

In Nature Communications on 22 May 2020 by van Tilburg Bernardes, E., Pettersen, V. K., et al.

The gut microbiome consists of a multi-kingdom microbial community. Whilst the role of bacteria as causal contributors governing host physiological development is well established, the role of fungi remains to be determined. Here, we use germ-free mice colonized with defined species of bacteria, fungi, or both to differentiate the causal role of fungi on microbiome assembly, immune development, susceptibility to colitis, and airway inflammation. Fungal colonization promotes major shifts in bacterial microbiome ecology, and has an independent effect on innate and adaptive immune development in young mice. While exclusive fungal colonization is insufficient to elicit overt dextran sulfate sodium-induced colitis, bacterial and fungal co-colonization increase colonic inflammation. Ovalbumin-induced airway inflammation reveals that bacterial, but not fungal colonization is necessary to decrease airway inflammation, yet fungi selectively promotes macrophage infiltration in the airway. Together, our findings demonstrate a causal role for fungi in microbial ecology and host immune functionality, and therefore prompt the inclusion of fungi in therapeutic approaches aimed at modulating early life microbiomes.

  • Immunology and Microbiology

Integrated Cross-Species Analysis Identifies a Conserved Transitional Dendritic Cell Population.

In Cell Reports on 10 December 2019 by Leylek, R., Alcántara-Hernández, M., et al.

Plasmacytoid dendritic cells (pDCs) are sensor cells with diverse immune functions, from type I interferon (IFN-I) production to antigen presentation, T cell activation, and tolerance. Regulation of these functions remains poorly understood but could be mediated by functionally specialized pDC subpopulations. We address pDC diversity using a high-dimensional single-cell approach: mass cytometry (CyTOF). Our analysis uncovers a murine pDC-like population that specializes in antigen presentation with limited capacity for IFN-I production. Using a multifaceted cross-species comparison, we show that this pDC-like population is the definitive murine equivalent of the recently described human AXL+ DCs, which we unify under the name transitional DCs (tDCs) given their continuum of pDC and cDC2 characteristics. tDCs share developmental traits with pDCs, as well as recruitment dynamics during viral infection. Altogether, we provide a framework for deciphering the function of pDCs and tDCs during diseases, which has the potential to open new avenues for therapeutic design.
Copyright © 2019 The Author(s). Published by Elsevier Inc. All rights reserved.

  • IHC
  • Mus musculus (House mouse)
  • Immunology and Microbiology

Protective role of commensal bacteria in Sjögren Syndrome.

In Journal of Autoimmunity on 1 September 2018 by Zaheer, M., Wang, C., et al.

CD25 knock-out (CD25KO) mice spontaneously develop Sjögren Syndrome (SS)-like inflammation. We investigated the role of commensal bacteria by comparing CD25KO mice housed in conventional or germ-free conditions. Germ-free CD25KO mice have greater corneal barrier dysfunction, lower goblet cell density, increased total lymphocytic infiltration score, increased expression of IFN-γ, IL-12 and higher a frequency of CD4+IFN-γ+ cells than conventional mice. CD4+ T cells isolated from female germ-free CD25KO mice adoptively transferred to naive immunodeficient RAG1KO recipients caused more severe Sjögren-like disease than CD4+ T cells transferred from conventional CD25KO mice. Fecal transplant in germ-free CD25KO mice reversed the spontaneous dry eye phenotype and decreased the generation of pathogenic CD4+IFN-γ+ cells. Our studies indicate that lack of commensal bacteria accelerates the onset and severity of dacryoadenitis and generates autoreactive CD4+T cells with greater pathogenicity in the CD25KO model, suggesting that the commensal bacteria or their metabolites products have immunoregulatory properties that protect exocrine glands in the CD25KO SS model.
Copyright © 2018 Elsevier Ltd. All rights reserved.

Schwann Cell Transplantation Subdues the Pro-Inflammatory Innate Immune Cell Response after Spinal Cord Injury.

In International Journal of Molecular Sciences on 28 August 2018 by Pearse, D. D., Bastidas, J., et al.

The transplantation of Schwann cells (SCs) has been shown to provide tissue preservation and support axon growth and remyelination as well as improve functional recovery across a diverse range of experimental spinal cord injury (SCI) paradigms. The autologous use of SCs has progressed to Phase 1 SCI clinical trials in humans where their use has been shown to be both feasible and safe. The contribution of immune modulation to the protective and reparative actions of SCs within the injured spinal cord remains largely unknown. In the current investigation, the ability of SC transplants to alter the innate immune response after contusive SCI in the rat was examined. SCs were intraspinally transplanted into the lesion site at 1 week following a thoracic (T8) contusive SCI. Multicolor flow cytometry and immunohistochemical analysis of specific phenotypic markers of pro- and anti-inflammatory microglia and macrophages as well as cytokines at 1 week after SC transplantation was employed. The introduction of SCs significantly attenuated the numbers of cluster of differentiation molecule 11B (CD11b)⁺, cluster of differentiation molecule 68 (CD68)⁺, and ionized calcium-binding adapter molecule 1 (Iba1)⁺ immune cells within the lesion implant site, particularly those immunoreactive for the pro-inflammatory marker, inducible nitric oxide synthase (iNOS). Whereas numbers of anti-inflammatory CD68⁺ Arginase-1 (Arg1⁺) iNOS- cells were not altered by SC transplantation, CD68⁺ cells of an intermediate, Arg1⁺ iNOS⁺ phenotype were increased by the introduction of SCs into the injured spinal cord. The morphology of Iba1⁺ immune cells was also markedly altered in the SC implant, being elongated and in alignment with SCs and in-growing axons versus their amoeboid form after SCI alone. Examination of pro-inflammatory cytokines, tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-1β), and anti-inflammatory cytokines, interleukin-4 (IL-4) and interleukin-10 (IL-10), by multicolor flow cytometry analysis showed that their production in CD11b⁺ cells was unaltered by SC transplantation at 1 week post-transplantation. The ability of SCs to subdue the pro-inflammatory iNOS⁺ microglia and macrophage phenotype after intraspinal transplantation may provide an important contribution to the neuroprotective effects of SCs within the sub-acute SCI setting.

  • Immunology and Microbiology
  • Neuroscience

Sjögren-Like Lacrimal Keratoconjunctivitis in Germ-Free Mice.

In International Journal of Molecular Sciences on 13 February 2018 by Wang, C., Zaheer, M., et al.

Commensal bacteria play an important role in the formation of the immune system but their role in the maintenance of immune homeostasis at the ocular surface and lacrimal gland remains poorly understood. This study investigated the eye and lacrimal gland phenotype in germ-free and conventional C57BL/6J mice. Our results showed that germ-free mice had significantly greater corneal barrier disruption, greater goblet cell loss, and greater total inflammatory cell and CD4⁺ T cell infiltration within the lacrimal gland compared to the conventionally housed group. A greater frequency of CD4⁺IFN-γ⁺ cells was observed in germ-free lacrimal glands. Females exhibited a more severe phenotype compared to males. Adoptive transfer of CD4⁺ T cells isolated from female germ-free mice into RAG1KO mice transferred Sjögren-like lacrimal keratoconjunctivitis. Fecal microbiota transplant from conventional mice reverted dry eye phenotype in germ-free mice and decreased CD4⁺IFN-γ⁺ cells to levels similar to conventional C57BL/6J mice. These findings indicate that germ-free mice have a spontaneous lacrimal keratoconjunctivitis similar to that observed in Sjögren syndrome patients and demonstrate that commensal bacteria function in maintaining immune homeostasis on the ocular surface. Thus, manipulation of intestinal commensal bacteria has the potential to become a novel therapeutic approach to treat Sjögren Syndrome.

View this product on CiteAb