Product Citations: 6

In allogeneic-hematopoietic stem cell transplantation for acute myeloid leukemia (AML), donor T cells combat leukemia through the graft-versus-leukemia (GVL) effect, while they also pose a risk of triggering life-threatening graft-versus-host disease (GVHD) by interacting with recipient cells. The onset of GVHD hinges on the interplay between donor T cells and recipient antigen-presenting cells (APCs), sparking T-cell activation. However, effective methods to balance GVHD and GVL are lacking.
In our study, we crafted nanocapsules by layering polycationic aminated gelatin and polyanionic alginate onto the surface of T cells, examining potential alterations in their fundamental physiological functions. Subsequently, we established an AML mouse model and treated it with transplantation of bone marrow cells (BMCs) combined with encapsulated T cells to investigate the GVL and anti-GVHD effects of encapsulated T cells. In vitro co-culture was employed to probe the effects of encapsulation on immune synapses, co-stimulatory molecules, and tumor-killing pathways.
Transplantation of BMCs combined with donor T cells selectively encapsulated onto AML mice significantly alleviates GVHD symptoms while preserving essential GVL effects. Encapsulated T cells exerted their immunomodulatory effects by impeding the formation of immune synapses with recipient APCs, thereby downregulating co-stimulatory signals such as CD28-CD80, ICOS-ICOSL, and CD40L-CD40. Recipient mice receiving encapsulated T-cell transplantation exhibited a marked increase in donor Ly-5.1-BMC cell numbers, accompanied by unaltered in vivo expression levels of perforin and granzyme B. While transient inhibition of donor T-cell cytotoxicity in the tumor microenvironment was observed in vitro following single-cell nanoencapsulation, subsequent restoration to normal antitumor activity ensued, attributed to selective permeability of encapsulated vesicle shells and material degradation. Moreover, the expression of apoptotic proteins and FAS-FAS ligand pathway at normal levels was still observed in leukemia tumor cells.
Encapsulated donor T cells effectively mitigate GVHD while preserving the GVL effect by minimizing co-stimulatory signaling with APCs through early immune isolation. Subsequent degradation of nanocapsules restores T-cell cytotoxic efficacy against AML cells, mediated by cytotoxic pathways. Using transplant-encapsulated T cells offers a promising strategy to suppress GVHD while preserving the GVL effect.
© Author(s) (or their employer(s)) 2024. Re-use permitted under CC BY-NC. No commercial re-use. See rights and permissions. Published by BMJ.

  • Immunology and Microbiology

Generation of chimeric antigen receptor macrophages from human pluripotent stem cells to target glioblastoma.

In Immunooncol Technol on 1 December 2023 by Jin, G., Chang, Y., et al.

Glioblastoma (GBM) is an aggressive brain tumor giving a poor prognosis with the current treatment options. The advent of chimeric antigen receptor (CAR) T-cell therapy revolutionized the field of immunotherapy and has provided a new set of therapeutic options for refractory blood cancers. In an effort to apply this therapeutic approach to solid tumors, various immune cell types and CAR constructs are being studied. Notably, macrophages have recently emerged as potential candidates for targeting solid tumors, attributed to their inherent tumor-infiltrating capacity and abundant presence in the tumor microenvironment.
In this study, we developed a chemically defined differentiation protocol to generate macrophages from human pluripotent stem cells (hPSCs). A GBM-specific CAR was genetically incorporated into hPSCs to generate CAR hPSC-derived macrophages.
The CAR hPSC-derived macrophages exhibited potent anticancer activity against GBM cells in vitro.
Our findings demonstrate the feasibility of generating functional CAR-macrophages from hPSCs for adoptive immunotherapy, thereby opening new avenues for the treatment of solid tumors, particularly GBM.
© 2023 The Author(s).

  • FC/FACS
  • Immunology and Microbiology
  • Stem Cells and Developmental Biology

SARS-CoV-2 has infected over 753 million individuals and caused more than 6.8 million deaths globally to date. COVID-19 disease severity has been associated with SARS-CoV-2 induced hyper inflammation and the immune correlation with its pathogenesis remains unclear. Acute viral infection is characterised by vigorous coordinated innate and adaptive activation, including an early cellular response that correlates well with the amplitude of virus specific humoral response.
The present study covers a wide spectrum of cellular immune response against COVID-19, irrespective of infection and vaccination.
We analysed immune status of (a) COVID-19 hospitalised patients including deceased and recovered patients, and compared with home isolated and non-infected healthy individuals, and (b) infected home isolated individuals with vaccinated individuals, using flow cytometry. We performed flow cytometry analysis of PBMCs to determine non-specific cell-mediated immune response.
The immune response revealed extensive induction and activation of multiple immune lineages, including T and B cells, Th17 regulatory subsets and M1, M2 macrophages in deceased and hospitalised recovered patients, vaccinated and healthy individuals. Compromised immune cell expression was observed in deceased patients even in later stages, while expression was restored in hospitalised recovered patients and home isolated individuals.
The findings associated with recovery and convalescence define a new signature of cellular immune response that persists in individuals with SARS-CoV-2 infection and vaccination. The findings will help in providing a better understanding of COVID-19 disease and will aid in developing better therapeutic strategies for treatment.
Copyright © 2023. Published by Elsevier GmbH.

  • FC/FACS
  • COVID-19
  • Immunology and Microbiology

CDKN1A is a target for phagocytosis-mediated cellular immunotherapy in acute leukemia.

In Nature Communications on 8 November 2022 by Allouch, A., Voisin, L., et al.

Targeting the reprogramming and phagocytic capacities of tumor-associated macrophages (TAMs) has emerged as a therapeutic opportunity for cancer treatment. Here, we demonstrate that tumor cell phagocytosis drives the pro-inflammatory activation of TAMs and identify a key role for the cyclin-dependent kinase inhibitor CDKN1A (p21). Through the transcriptional repression of Signal-Regularity Protein α (SIRPα), p21 promotes leukemia cell phagocytosis and, subsequently, the pro-inflammatory reprogramming of phagocytic macrophages that extends to surrounding macrophages through Interferon γ. In mouse models of human T-cell acute lymphoblastic leukemia (T-ALL), infusion of human monocytes (Mos) engineered to overexpress p21 (p21TD-Mos) leads to Mo differentiation into phagocytosis-proficient TAMs that, after leukemia cell engulfment, undergo pro-inflammatory activation and trigger the reprogramming of bystander TAMs, reducing the leukemic burden and substantially prolonging survival in mice. These results reveal p21 as a trigger of phagocytosis-guided pro-inflammatory TAM reprogramming and highlight the potential for p21TD-Mo-based cellular therapy as a cancer immunotherapy.
© 2022. The Author(s).

  • ICC-IF
  • Cancer Research
  • Immunology and Microbiology

The mechanism of protection of the only approved tuberculosis (TB) vaccine, Bacillus Calmette Guérin (BCG) is poorly understood. In recent years, epigenetic modifications induced by BCG have been demonstrated to reflect a state of trained immunity. The concept of trained immunity is now explored as a potential prevention strategy for a variety of infections. Studies on human TB immunity are dominated by those using peripheral blood as surrogate markers for immunity. Here, we instead studied the lung compartment by obtaining induced sputum from subjects included in a TB contact tracing. CD3- and HLA-DR-positive cells were isolated from the collected sputum and DNA methylome analyses performed. Unsupervised cluster analysis revealed that DNA methylomes of cells from TB-exposed individuals and controls appeared as separate clusters, and the numerous genes that were differentially methylated were functionally connected. The enriched pathways were strongly correlated to previously reported epigenetic changes and trained immunity in immune cells exposed to the BCG vaccine in human and animal studies. We further demonstrated that similar pathways were epigenetically modified in human macrophages trained with BCG in vitro . Finally, we found evidence of an M. tuberculosis- triggered emergence of a non-macrophage cell population from BCG-trained macrophage cultures. These cells did not phagocytose M. tuberculosis , but ‘corralled’ the bacteria into focal points, resulting in limitation of bacterial growth. Altogether, our study demonstrates that similar epigenetic changes are induced by M. tuberculosis and BCG and suggests that the modifications promote transformation of macrophages (or an unknown progenitor) to establish a yet undescribed cellular defense mechanism which we term ‘corralling’, based on the metaphorical resemblance to sheepdog herding.

  • Genetics
  • Immunology and Microbiology
View this product on CiteAb