Product Citations: 18

Sepsis induced dysfunction of liver type 1 innate lymphoid cells.

In BMC Immunology on 30 August 2024 by Wang, P., Zheng, Y., et al.

Sepsis is a life-threatening condition triggered by uncontrolled immune responses to infection, leading to widespread inflammation, tissue damage, organ dysfunction, and potentially death. The liver plays a crucial role in the immune response during sepsis, serving as a major site for immune cell activation and cytokine production. Liver type 1 innate lymphoid cells (ILCs) consist of NK cells and ILC1s. They maintain the local immune microenvironment by directly eliminating target cells and secreting cytokines. However, the specific roles and pathological changes of liver-resident NK cells and ILC1s during sepsis remain poorly understood.
This study aims to investigate the pathological changes of NK cells and ILC1s, which might contribute the dysfunction of liver. Sepsis mouse model was established by cecal ligation and puncture (CLP). Mouse immune cells from liver were isolated, and the surface makers, gene expression profiles, cytokine response and secretion, and mitochondrial function of NK (Natural Killer) cells and ILC1s (Innate Lymphoid Cell 1) were analyzed. A significant decrease in the number of mature NK cells was observed in the liver after CLP. Furthermore, the secretion of interferon-gamma (IFN-γ) was found to be reduced in spleen and liver NK cells when stimulated by IL-18. Mitochondrial activities in both liver NK cells and ILC1 were found to be increased during sepsis, suggesting an enhanced metabolic response in these cells to combat the infection. However, despite this heightened activity, liver NK cells exhibited a decreased level of cytotoxicity, which might impact their ability to target infected cells effectively. RNA sequencing supported and provided the potential mechanisms for the proinflammatory effects and exhaustion like phenotypes of liver NK cells.
Sepsis induces dysfunction and exhaustion-like phenotypes in liver NK cells and ILC1, which might further impair other immune cells and represent a potential therapeutic target for sepsis.
© 2024. The Author(s).

  • Mus musculus (House mouse)
  • Immunology and Microbiology

Group 1 innate lymphoid cells (ILCs) comprise conventional natural killer (cNK) cells and type 1 innate lymphoid cells (ILC1s). The main functions of liver cNK cells and ILC1s not only include directly killing target cells but also regulating local immune microenvironment of the liver through the secretion of cytokines. Uncovering the intricate mechanisms by which transcriptional factors regulate and influence the functions of liver cNK cells and ILC1s, particularly within the context of liver tumors, presents a significant opportunity to amplify the effectiveness of immunotherapies against liver malignancies. Using Ncr1-drived conditional knockout mouse model, our study reveals the regulatory role of Prdm1 in shaping the composition and maturation of cNK cells. Although Prdm1 did not affect the killing function of cNK cells in an in vivo cytotoxicity model, a significant increase in cancer metastasis was observed in Prdm1 knockout mice. Interferon-gamma (IFN-γ), granzyme B, and perforin secretion decreased significantly in Prdm1-deficient cNK cells and liver ILC1s. Single-cell RNA sequencing (scRNA-seq) data also provided evidences that Prdm1 maintains functional subsets of cNK cells and liver ILC1s and facilitates communications between cNK cells, liver ILC1s, and macrophages. The present study unveiled a novel regulatory mechanism of Prdm1 in cNK cells and liver ILC1s, showing promising potential for developing innovative immune therapy strategies against liver cancer.
© 2024, He, Gao, Wang et al.

  • FC/FACS
  • Mus musculus (House mouse)
  • Cancer Research
  • Immunology and Microbiology

Influenza A virus (IAV) causes significant morbidity and mortality worldwide due to seasonal epidemics and periodic pandemics. The antigenic drift/shift of IAV continually gives rise to new strains and subtypes, aiding IAV in circumventing previously established immunity. As a result, there has been substantial interest in developing a broadly protective IAV vaccine that induces, durable immunity against multiple IAVs. Previously, a polyanhydride nanoparticle-based vaccine or nanovaccine (IAV-nanovax) encapsulating H1N1 IAV antigens was reported, which induced pulmonary B and T cell immunity and resulted in cross-strain protection against IAV. A key feature of IAV-nanovax is its ability to easily incorporate diverse proteins/payloads, potentially increasing its ability to provide broad protection against IAV and/or other pathogens. Due to human susceptibility to both H1N1 and H3N2 IAV, several H3N2 nanovaccines were formulated herein with multiple IAV antigens to examine the "plug-and-play" nature of the polyanhydride nanovaccine platform and determine their ability to induce humoral and cellular immunity and broad-based protection similar to IAV-nanovax. The H3N2-based IAV nanovaccine formulations induced systemic and mucosal B cell responses which were associated with antigen-specific antibodies. Additionally, systemic and lung-tissue resident CD4 and CD8 T cell responses were enhanced post-vaccination. These immune responses corresponded with protection against both homologous and heterosubtypic IAV infection. Overall, these results demonstrate the plug-and-play nature of the polyanhydride nanovaccine platform and its ability to generate immunity and protection against IAV utilizing diverse antigenic payloads.
© 2024. The Author(s).

  • FC/FACS
  • Mus musculus (House mouse)
  • Immunology and Microbiology

Tissue-resident memory CD8 T cells (TRM) principally reside in peripheral nonlymphoid tissues, such as lung and skin, and confer protection against a variety of illnesses ranging from infections to cancers. The functions of different memory CD8 T cell subsets have been linked with distinct metabolic pathways and differ from other CD8 T cell subsets. For example, skin-derived memory T cells undergo fatty acid oxidation and oxidative phosphorylation to a greater degree than circulating memory and naive cells. Lung TRMs defined by the cell-surface expression of integrins exist as distinct subsets that differ in gene expression and function. We hypothesize that TRM subsets with different integrin profiles will use unique metabolic programs. To test this, differential expression and pathway analysis were conducted on RNA sequencing datasets from mouse lung TRMs yielding significant differences related to metabolism. Next, metabolic models were constructed, and the predictions were interrogated using functional metabolite uptake assays. The levels of oxidative phosphorylation, mitochondrial mass, and neutral lipids were measured. Furthermore, to investigate the potential relationships to TRM development, T cell differentiation studies were conducted in vitro with varying concentrations of metabolites. These demonstrated that lipid conditions impact T cell survival, and that glucose concentration impacts the expression of canonical TRM marker CD49a, with no effect on central memory-like T cell marker CCR7. In summary, it is demonstrated that mouse resident memory T cell subsets defined by integrin expression in the lung have unique metabolic profiles, and that nutrient abundance can alter differentiation.
Copyright © 2023 The Authors.

  • FC/FACS
  • Biochemistry and Molecular biology
  • Cell Biology
  • Immunology and Microbiology

Brain resident memory T cells rapidly expand and initiate neuroinflammatory responses following CNS viral infection.

In Brain, Behavior, and Immunity on 1 August 2023 by Ayasoufi, K., Wolf, D. M., et al.

The contribution of circulating verses tissue resident memory T cells (TRMs) to clinical neuropathology is an enduring question due to a lack of mechanistic insights. The prevailing view is TRMs are protective against pathogens in the brain. However, the extent to which antigen-specific TRMs induce neuropathology upon reactivation is understudied. Using the described phenotype of TRMs, we found that brains of naïve mice harbor populations of CD69+ CD103- T cells. Notably, numbers of CD69+ CD103- TRMs rapidly increase following neurological insults of various origins. This TRM expansion precedes infiltration of virus antigen-specific CD8 T cells and is due to proliferation of T cells within the brain. We next evaluated the capacity of antigen-specific TRMs in the brain to induce significant neuroinflammation post virus clearance, including infiltration of inflammatory myeloid cells, activation of T cells in the brain, microglial activation, and significant blood brain barrier disruption. These neuroinflammatory events were induced by TRMs, as depletion of peripheral T cells or blocking T cell trafficking using FTY720 did not change the neuroinflammatory course. Depletion of all CD8 T cells, however, completely abrogated the neuroinflammatory response. Reactivation of antigen-specific TRMs in the brain also induced profound lymphopenia within the blood compartment. We have therefore determined that antigen-specific TRMs can induce significant neuroinflammation, neuropathology, and peripheral immunosuppression. The use of cognate antigen to reactivate CD8 TRMs enables us to isolate the neuropathologic effects induced by this cell type independently of other branches of immunological memory, differentiating this work from studies employing whole pathogen re-challenge. This study also demonstrates the capacity for CD8 TRMs to contribute to pathology associated with neurodegenerative disorders and long-term complications associated with viral infections. Understanding functions of brain TRMs is crucial in investigating their role in neurodegenerative disorders including MS, CNS cancers, and long-term complications associated with viral infections including COVID-19.
Copyright © 2023 Elsevier Inc. All rights reserved.

  • Mus musculus (House mouse)
  • Immunology and Microbiology
View this product on CiteAb