Product Citations: 3

Cell therapy is a useful treatment method for wide spectrum of diseases which utilizes the immunosuppressive and regenerative abilities of administered cells. It is essential to build a transport system of tissues from which cells are harvested, because various external factors, such as temperature, time, air pressure, and vibration affect the cell functions isolated from body tissues. In particular, temperature is a critical factor which determines the viability of the cells and organs. In this study, we investigated the optimal temperature during the transportation of lipoaspirates from which adipose -derived stem cells (ASCs) were isolated.
Lipoaspirates obtained by liposuctions (lipomatic or vaser method) were transported in four different temperature zones (4, 20, 32, and 37 °C) in a transport container which is electrically controlled to maintain a constant temperature during transport. Stromal vascular fractions (SVFs) were harvested from the lipoaspirate, and the cell number, viability and proliferation rate and the yield of ASCs were examined. In addition, the metabolic state of the cells was examined.
ASCs from lipoaspirates transported at high temperature significantly decreased cell viability, while those at low temperature maintained high cell viability and showed good cell proliferation. In addition, transportation of lipoaspirates at low temperature resulted in a high level of NAD+/NADH, coenzymes involved in intracellular metabolism, and a low level of lactate in lipoaspirate suppressed the glycolytic system of intracellular metabolism, in ASCs.
The lipoaspirate transported at 4 °C exhibited best results regarding live cell number, viability and cell proliferation in our experiments. This study offers a direction to build a transport system that connects laboratories and hospitals and achieve a beneficial therapy for patients.
© 2023 The Japanese Society for Regenerative Medicine. Production and hosting by Elsevier B.V.

  • FC/FACS
  • Homo sapiens (Human)
  • Biochemistry and Molecular biology
  • Cell Biology

Hepatic platelet accumulation contributes to acetaminophen (APAP)-induced liver injury (AILI). However, little is known about the molecular pathways involved in platelet recruitment to the liver and whether targeting such pathways could attenuate AILI.
Mice were fasted overnight before intraperitoneally (i.p.) injected with APAP at a dose of 210 mg/kg for male mice and 325 mg/kg for female mice. Platelets adherent to Kupffer cells were determined in both mice and patients overdosed with APAP. The impact of α-chitinase 3-like-1 (α-Chi3l1) on alleviation of AILI was determined in a therapeutic setting, and liver injury was analyzed.
The present study unveiled a critical role of Chi3l1 in hepatic platelet recruitment during AILI. Increased Chi3l1 and platelets in the liver were observed in patients and mice overdosed with APAP. Compared to wild-type (WT) mice, Chil1-/- mice developed attenuated AILI with markedly reduced hepatic platelet accumulation. Mechanistic studies revealed that Chi3l1 signaled through CD44 on macrophages to induce podoplanin expression, which mediated platelet recruitment through C-type lectin-like receptor 2. Moreover, APAP treatment of Cd44-/- mice resulted in much lower numbers of hepatic platelets and liver injury than WT mice, a phenotype similar to that in Chil1-/- mice. Recombinant Chi3l1 could restore hepatic platelet accumulation and AILI in Chil1-/- mice, but not in Cd44-/- mice. Importantly, we generated anti-Chi3l1 monoclonal antibodies and demonstrated that they could effectively inhibit hepatic platelet accumulation and AILI.
We uncovered the Chi3l1/CD44 axis as a critical pathway mediating APAP-induced hepatic platelet recruitment and tissue injury. We demonstrated the feasibility and potential of targeting Chi3l1 to treat AILI.
ZS received funding from NSFC (32071129). FWL received funding from NIH (GM123261). ALFSG received funding from NIDDK (DK 058369). ZA received funding from CPRIT (RP150551 and RP190561) and the Welch Foundation (AU-0042-20030616). CJ received funding from NIH (DK122708, DK109574, DK121330, and DK122796) and support from a University of Texas System Translational STARs award. Portions of this work were supported with resources and the use of facilities of the Michael E. DeBakey VA Medical Center and funding from Department of Veterans Affairs I01 BX002551 (Equipment, Personnel, Supplies). The contents do not represent the views of the US Department of Veterans Affairs or the US Government.

  • FC/FACS

Characterization of mechanical and regenerative properties of human, adipose stromal cells.

In Cellular and Molecular Bioengineering on 1 December 2014 by Kanthilal, M. & Darling, E. M.

The stromal vascular fraction (SVF) of human adipose tissue is a heterogeneous population, with component cell types that may or may not contribute to its regenerative potential. Recent findings indicate that single-cell mechanical biomarkers are characteristic of cell type and can be used comparably to gene and protein expressions to identify cell populations. In this study, we characterized mechanical properties and differentiation potential of cell types present in the SVF. Fluorescence-activated cell sorting was used to isolate four distinct populations based on surface markers: endothelial cells (EC), adipose-derived stem cells (ASCs), pre-adipocytes, and smooth muscle cells (SMC). Atomic force microscopy was used to mechanically characterize sorted cell populations and unsorted SVF. Differentiation capabilities of sorted and unsorted populations were evaluated by quantifying lipid production and calcified matrix deposition. Cells populating the SVF exhibited a range of mechanical properties, with ECs, ASCs, pre-adipocytes, and unsorted SVF cells being significantly more compliant than SMCs. Lineage-specific metabolite production was most robust in SVF cells, followed by ASCs, with the other cell types showing little or no potential, suggesting the unsorted populations may benefit from a paracrine response that is lacking once the cells are sorted into more uniform cell populations.

  • Homo sapiens (Human)
View this product on CiteAb