Product Citations: 3

Inhibition of autotaxin activity ameliorates neuropathic pain derived from lumbar spinal canal stenosis.

In Scientific Reports on 17 February 2021 by Uranbileg, B., Ito, N., et al.

Lumbar spinal canal stenosis (LSS) or mechanical compression of dorsal root ganglion (DRG) is one of the causes of low back pain and neuropathic pain (NP). Lysophosphatidic acid (LPA) is a potent bioactive lipid mediator that is produced mainly from lysophosphatidylcholine (LPC) via autotaxin (ATX) and is known to induce NP via LPA1 receptor signaling in mice. Recently, we demonstrated that LPC and LPA were higher in cerebrospinal fluid (CSF) of patients with LSS. Based on the possible potential efficacy of the ATX inhibitor for NP treatment, we used an NP model with compression of DRG (CD model) and investigated LPA dynamics and whether ATX inhibition could ameliorate NP symptoms, using an orally available ATX inhibitor (ONO-8430506) at a dose of 30 mg/kg. In CD model, we observed increased LPC and LPA levels in CSF, and decreased threshold of the pain which were ameliorated by oral administration of the ATX inhibitor with decreased microglia and astrocyte populations at the site of the spinal dorsal horn projecting from injured DRG. These results suggested possible efficacy of ATX inhibitor for the treatment of NP caused by spinal nerve root compression and involvement of the ATX-LPA axis in the mechanism of NP induction.

  • FC/FACS
  • Rattus norvegicus (Rat)
  • Neuroscience

Cauda equina compression (CEC) is a major cause of neurogenic claudication and progresses to neuropathic pain (NP). A lipid mediator, lysophosphatidic acid (LPA), is known to induce NP via the LPA1 receptor. To know a possible mechanism of LPA production in neurogenic claudication, we determined the levels of LPA, lysophosphatidylcholine (LPC) and LPA-producing enzyme autotaxin (ATX), in the cerebrospinal fluid (CSF) and spinal cord (SC) using a CEC as a possible model of neurogenic claudication. Using silicon blocks within the lumbar epidural space, we developed a CEC model in rats with motor dysfunction. LPC and LPA levels in the CSF were significantly increased from day 1. Importantly, specific LPA species (16:0, 18:2, 20:4) were upregulated, which have been shown to produce by ATX detected in the CSF, without changes on its level. In SC, the LPC and LPA levels did not change, but mass spectrometry imaging analysis revealed that LPC was present in a region where the silicon blocks were inserted. These results propose a model for LPA production in SC and CSF upon neurogenic claudication that LPC produced locally by tissue damages is converted to LPA by ATX, which then leak out into the CSF.

  • FC/FACS
  • Rattus norvegicus (Rat)
  • Neuroscience

Cell Surface CD36 Protein in Monocyte/Macrophage Contributes to Phagocytosis during the Resolution Phase of Ischemic Stroke in Mice.

In The Journal of Biological Chemistry on 4 November 2016 by Woo, M. S., Yang, J., et al.

Infiltrating monocyte-derived macrophages (M-MΦ) influence stroke-induced brain injury. Although the inflammatory nature of M-MΦ in acute stroke has been well documented, their role during the resolution phase of stroke is less clear. With emerging evidence for the involvement of scavenger receptors in innate immunity, this study addresses an M-MΦ CD36 role in mediating phagocytosis during the recovery phase of stroke. Stroke increases CD36 and TSP-1/2 mRNA levels in the ipsilateral hemisphere at acute (3-day (d)) and recovery (7d) periods. Quantification of total, intracellular, and cell surface CD36 protein levels showed relatively unchanged expression at 3d post-ischemia. At 7d, there was a significant increase in cell surface CD36 (p < 0.05) with a concurrent reduction of intracellular CD36 (p < 0.05) in the ipsilateral hemisphere. Both cell surface and intracellular CD36 were found in whole brain lysates, whereas cell surface CD36 was predominantly detected in isolated brain mononuclear cells, blood monocytes, and peritoneal macrophages, suggesting that cell surface CD36 expressed in the post-ischemic brain originates from the periphery. The stroke-induced CD36 mRNA level correlated with increased expression of lysosomal acid lipase, an M2 macrophage marker. Functionally, higher CD36 expression in M-MΦ is correlated with higher phagocytic indices in post-ischemic brain immune cells. Moreover, pharmacological inhibition of CD36 attenuated phagocytosis in peritoneal macrophages and brain M-MΦ These findings demonstrate that cell surface CD36 on M-MΦ mediates phagocytosis during the recovery phase in post-stroke brains and suggests that CD36 plays a reparative role during the resolution of inflammation in ischemic stroke.
© 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  • Mus musculus (House mouse)
  • Biochemistry and Molecular biology
  • Cardiovascular biology
  • Immunology and Microbiology
View this product on CiteAb