Product Citations: 3

Abl family tyrosine kinases govern IgG extravasation in the skin in a murine pemphigus model.

In Nature Communications on 30 September 2019 by Ono, S., Egawa, G., et al.

The pathway of homeostatic IgG extravasation is not fully understood, in spite of its importance for the maintenance of host immunity, the management of autoantibody-mediated disorders, and the use of antibody-based biologics. Here we show in a murine model of pemphigus, a prototypic cutaneous autoantibody-mediated disorder, that blood-circulating IgG extravasates into the skin in a time- and dose-dependent manner under homeostatic conditions. This IgG extravasation is unaffected by depletion of Fcγ receptors, but is largely attenuated by specific ablation of dynamin-dependent endocytic vesicle formation in blood endothelial cells (BECs). Among dynamin-dependent endocytic vesicles, IgG co-localizes well with caveolae in cultured BECs. An Abl family tyrosine kinase inhibitor imatinib, which reduces caveolae-mediated endocytosis, impairs IgG extravasation in the skin and attenuates the murine pemphigus manifestations. Our study highlights the kinetics of IgG extravasation in vivo, which might be a clue to understand the pathological mechanism of autoantibody-mediated autoimmune disorders.

  • Mus musculus (House mouse)

Demyelination causes adult CNS progenitors to revert to an immature state and express immune cues that support their migration.

In The Journal of Neuroscience on 7 January 2015 by Moyon, S., Dubessy, A. L., et al.

The declining efficiency of myelin regeneration in individuals with multiple sclerosis has stimulated a search for ways by which it might be therapeutically enhanced. Here we have used gene expression profiling on purified murine oligodendrocyte progenitor cells (OPCs), the remyelinating cells of the adult CNS, to obtain a comprehensive picture of how they become activated after demyelination and how this enables them to contribute to remyelination. We find that adult OPCs have a transcriptome more similar to that of oligodendrocytes than to neonatal OPCs, but revert to a neonatal-like transcriptome when activated. Part of the activation response involves increased expression of two genes of the innate immune system, IL1β and CCL2, which enhance the mobilization of OPCs. Our results add a new dimension to the role of the innate immune system in CNS regeneration, revealing how OPCs themselves contribute to the postinjury inflammatory milieu by producing cytokines that directly enhance their repopulation of areas of demyelination and hence their ability to contribute to remyelination.
Copyright © 2015 the authors 0270-6474/15/350004-17$15.00/0.

  • IHC-Fr-IF
  • Mus musculus (House mouse)
  • Immunology and Microbiology
  • Neuroscience

An expression profile analysis of ES cell-derived definitive endodermal cells and Pdx1-expressing cells.

In BMC Developmental Biology on 1 March 2011 by Ogaki, S., Harada, S., et al.

We developed an efficient in vitro method to differentiate mouse ES cells into the definitive endoderm (DE) and then Pdx1-expressing pancreatic lineages using mesodermal-derived supporting cells, M15. Using this method, resulting ES cell-derived DE and Pdx1-expressing cells were isolated by cell sorting, and their gene expression profiles were investigated with DNA microarray. Genes that were specifically expressed in DE and/or in Pdx1-expressing cells were extracted and their expression patterns in normal embryonic development were studied.
Genes whose expression increased in DE and Pdx1 positive cells compared to the undifferentiated ES cells were chosen and in situ hybridizations were performed. Out of 54 genes examined, 27 were expressed in the DE of E8.5 mouse embryos and 15 genes were expressed in distinct domains in the pancreatic buds of E14.5 embryos. Among those genes expressed were Foxq1, CpM, Foxp4, Pcdh1, and Zmiz1, which were previously reported in other endodermal tissues. Genes, such as Parm1, Tmem184a, Hipk2 and Sox4 were reported to be expressed during early pancreatic development. Nptx2, C2cd4b, Tcf7l2 and Kiss1r were reported to be associated with beta cell or pancreatic functions in the adult. Akr1c19, Aebp2, Pbxip1 and Creb3l1, were novel and have not been described as being expressed either in DE or the pancreas.
We identified 27 genes, including 4 novel genes expressed in DE and pancreatic progenitor cells during normal development using an ES cell in vitro differentiation system. These results showed that DE cells and Pdx1/GFP-expressing cells obtained from our M15 based differentiation method mimic cells during the normal developmental processes. Additionally, ES cells are an excellent model for studies of early developmental processes.

  • Stem Cells and Developmental Biology
View this product on CiteAb