Product Citations: 5

The Cross-Talk between miR-511-3p and C-Type Lectin Receptors on Dendritic Cells Affects Dendritic Cell Function.

In The Journal of Immunology on 1 July 2019 by Awuah, D., Alobaid, M., et al.

MicroRNAs are small, noncoding RNAs that function as posttranscriptional modulators of gene expression by binding target mRNAs and inhibiting translation. They are therefore crucial regulators of several biological as well as immunological events. Recently, miR-511-3p has been implicated in the development and differentiation of APCs, such as dendritic cells (DCs), and regulating several human diseases. Interestingly, miR-511-3p is embedded within the human MRC1 gene that encodes the mannose receptor. In this study, we sought to examine the impact of miR-511-3p up- or downregulation on human DC surface phenotype, cytokine profile, immunogenicity (using IDO activity as a surrogate), and downstream T cell polarization. Using gene silencing and a selection of microRNA mimics, we could successfully suppress or induce the expression of miR-511-3p in DCs. Consequently, we show for the first time, to our knowledge, that inhibition and/or overexpression of miR-511-3p has opposing effects on the expression levels of two key C-type lectin receptors, namely the mannose receptor and DC-specific ICAM 3 nonintegrin at protein and mRNA levels, thereby affecting C-type lectin receptor-induced modulation of IDO activity in DCs. Furthermore, we show that downregulation of miR-511-3p drives an anti-inflammatory DC response characterized by IL-10 production. Interestingly, the miR-511-3plow DCs also promoted IL-4 secretion and suppressed IL-17 in cocultures with autologous T cells. Together, our data highlight the potential role of miR-511 in regulating DC function and downstream events leading to Th polarization and immune modulation.
Copyright © 2019 by The American Association of Immunologists, Inc.

  • Immunology and Microbiology

Tumor-infiltrating mesenchymal stem cells: Drivers of the immunosuppressive tumor microenvironment in prostate cancer?

In The Prostate on 1 February 2019 by Krueger, T. E., Thorek, D. L. J., et al.

Prostate cancer is characterized by T-cell exclusion, which is consistent with their poor responses to immunotherapy. In addition, T-cells restricted to the adjacent stroma and benign areas are characterized by anergic and immunosuppressive phenotypes. In order for immunotherapies to produce robust anti-tumor responses in prostate cancer, this exclusion barrier and immunosuppressive microenvironment must first be overcome. We have previously identified mesenchymal stem cells (MSCs) in primary and metastatic human prostate cancer tissue.
An Opal Multiplex immunofluorescence assay based on CD73, CD90, and CD105 staining was used to identify triple-labeled MSCs in human prostate cancer tissue. T-cell suppression assays and flow cytometry were used to demonstrate the immunosuppressive potential of primary MSCs expanded from human bone marrow and prostate cancer tissue from independent donors.
Endogenous MSCs were confirmed to be present at sites of human prostate cancer. These prostate cancer-infiltrating MSCs suppress T-cell proliferation in a dose-dependent manner similar to their bone marrow-derived counterparts. Also similar to bone marrow-derived MSCs, prostate cancer-infiltrating MSCs upregulate expression of PD-L1 and PD-L2 on their cell surface in the presence of IFNγ and TNFα.
Prostate cancer-infiltrating MSCs suppress T-cell proliferation similar to canonical bone marrow-derived MSCs, which have well-documented immunosuppressive properties with numerous effects on both innate and adaptive immune system function. Thus, we hypothesize that selective depletion of MSCs infiltrating sites of prostate cancer should restore immunologic recognition and elimination of malignant cells via broad re-activation of cytotoxic pro-inflammatory pathways.
© 2018 Wiley Periodicals, Inc.

  • Cancer Research
  • Stem Cells and Developmental Biology

Early acute rejection of human allografts is mediated by circulating alloreactive host effector memory T cells (TEM). TEM infiltration typically occurs across graft postcapillary venules and involves sequential interactions with graft-derived endothelial cells (ECs) and pericytes (PCs). While the role of ECs in allograft rejection has been extensively studied, contributions of PCs to this process are largely unknown. This study aimed to characterize the effects and mechanisms of interactions between human PCs and allogeneic TEM. We report that unstimulated PCs, like ECs, can directly present alloantigen to TEM, but while IFN-γ-activated ECs (γ-ECs) show increased ability to stimulate alloreactive T cells, IFN-γ-activated PCs (γ-PCs) instead suppress TEM proliferation but not cytokine production or signaling. RNA sequencing analysis of PCs, γ-PCs, ECs, and γ-ECs reveal induction of indoleamine 2,3-dioxygenase 1 (IDO1) in γ-PCs to significantly higher levels than in γ-ECs that correlates with tryptophan depletion in vitro. Consistently, shRNA knockdown of IDO1 markedly reduces γ-PC-mediated immunoregulatory effects. Furthermore, human PCs express IDO1 in a skin allograft rejection humanized mouse model and in human renal allografts with acute T cell-mediated rejection. We conclude that immunosuppressive properties of human PCs are not intrinsic but instead result from IFN-γ-induced IDO1-mediated tryptophan depletion.

Tumor relapse after human leukocyte antigen-matched allogeneic stem cell transplantation (SCT) remains a serious problem, despite the long-term presence of minor histocompatibility antigen (MiHA)-specific memory T cells. Dendritic cell (DC)-based vaccination boosting MiHA-specific T-cell immunity is an appealing strategy to prevent or counteract tumor recurrence, but improvement is necessary to increase the clinical benefit. Here, we investigated whether knockdown of programmed death ligand 1 (PD-L1) and PD-L2 on monocyte-derived DCs results in improved T-cell activation. Electroporation of single siRNA sequences into immature DCs resulted in efficient, specific, and long-lasting knockdown of PD-L1 and PD-L2 expression. PD-L knockdown DCs strongly augmented interferon-γ and interleukin-2 production by stimulated T cells in an allogeneic mixed lymphocyte reaction, whereas no effect was observed on T-cell proliferation. Moreover, we demonstrated that PD-L gene silencing, especially combined PD-L1 and PD-L2 knockdown, resulted in improved proliferation and cytokine production of keyhole limpet hemocyanin-specific CD4(+) T cells. Most importantly, PD-L knockdown DCs showed superior potential to expand MiHA-specific CD8(+) effector and memory T cells from leukemia patients early after donor lymphocyte infusion and later during relapse. These data demonstrate that PD-L siRNA electroporated DCs are highly effective in enhancing T-cell proliferation and cytokine production, and are therefore attractive cells for improving the efficacy of DC vaccines in cancer patients.

  • Cardiovascular biology
  • Genetics
  • Immunology and Microbiology

Immunobiological characterization of cancer stem cells isolated from glioblastoma patients.

In Clinical Cancer Research on 1 February 2010 by Di Tomaso, T., Mazzoleni, S., et al.

Cancer stem cells (CSC) have been isolated from human tumors, including glioblastoma multiforme (GBM). The aims of this study were the immunobiological characterization of GBM CSCs and the assessment of whether these cells represent suitable targets for immunotherapy.
GBM CSC lines and their fetal bovine serum (FBS)-cultured non-CSC pair lines were generated and examined by flow cytometry for expression of known tumor antigens, MHC-I and MHC-II molecules, antigen-processing machinery components, and NKG2D ligands. In addition, immunogenicity and immunosuppression of such cell lines for autologous or allogeneic T lymphocytes were tested by cytokine secretion (ELISPOT) or proliferation (carboxyfluorescein diacetate succinimidyl ester) assays, respectively.
Both GBM CSC and FBS lines were weakly positive and negative for MHC-I, MHC-II, and NKG2D ligand molecules, respectively. Antigen-processing machinery molecules were also defective in both cell types. Upregulation of most molecules was induced by IFNs or 5-Aza deoxycytidine, although more efficiently in FBS than in CSCs. Patient T-cell responses, mediated by both TH1 and the TH2 subsets, against autologous CSC could be induced in vitro. In addition, CSC but not their paired FBS tumor lines inhibited T-cell proliferation of healthy donors. Notably, a differential gene signature that was confirmed at the protein levels for some immunologic-related molecules was also found between CSC and FBS lines.
These results indicate lower immunogenicity and higher suppressive activity of GBM CSC compared with FBS lines. The immunogenicity, however, could be rescued by immune modulation leading to anti-GBM T cell-mediated immune response.

  • Cancer Research
  • Stem Cells and Developmental Biology
View this product on CiteAb