Product Citations: 4

V2-glycan/apex broadly neutralizing antibodies (bnAbs) recognize a closed quaternary epitope of the HIV-1 envelope glycoprotein (Env). This closed structure is necessary to elicit apex antibodies and useful to guide the maturation of other bnAb classes. To compare antigens designed to maintain this conformation, we evaluated apex-specific responses in mice engrafted with a diverse repertoire of B cells expressing the HCDR3 of the apex bnAb VRC26.25. Engineered B cells affinity matured, guiding the improvement of VRC26.25 itself. We found that soluble Env (SOSIP) variants differed significantly in their ability to raise anti-apex responses. A transmembrane SOSIP (SOSIP-TM) delivered as an mRNA-lipid nanoparticle elicited more potent neutralizing responses than multimerized SOSIP proteins. Importantly, SOSIP-TM elicited neutralizing sera from B cells engineered with the predicted VRC26.25-HCDR3 progenitor, which also affinity matured. Our data show that HCDR3-edited B cells facilitate efficient in vivo comparisons of Env antigens and highlight the potential of an HCDR3-focused vaccine approach.
Copyright © 2023 Elsevier Inc. All rights reserved.

  • Immunology and Microbiology

Heavy-chain CDR3-engineered B cells facilitate<i>in vivo</i>evaluation of HIV-1 vaccine candidates

Preprint on BioRxiv : the Preprint Server for Biology on 7 November 2022 by He, W., Ou, T., et al.

SUMMARY V2-glycan/apex broadly neutralizing antibodies (bnAbs) recognize a closed quaternary epitope of the HIV-1 envelope glycoprotein (Env). This closed structure is necessary to elicit apex antibodies and useful to guide maturation of other bnAb classes. To compare antigens designed to maintain this conformation, apex-specific responses were monitored in mice engrafted with a diverse repertoire of B cells expressing the HCDR3 of the apex bnAb VRC26.25. Engineered B cells affinity matured, guiding improvement of VRC26.25 itself. We found that soluble Env (SOSIP) variants differed significantly in their ability to raise anti-apex responses. A transmembrane SOSIP (SOSIP-TM) delivered as an mRNA-lipid nanoparticle elicited more potent neutralizing responses than multimerized SOSIP proteins. Importantly, SOSIP-TM elicited neutralizing sera from B cells engineered with the predicted VRC26.25-HCDR3 progenitor, which also affinity matured. Our data show that HCDR3-edited B cells facilitate efficient in vivo comparisons of Env antigens and highlight the potential of an HCDR3-focused vaccine approach.

  • Mus musculus (House mouse)
  • Immunology and Microbiology

During the early phase of primary humoral responses, activated B cells can differentiate into different types of effector cells, dependent on B cell receptor affinity for antigen. However, the pivotal transcription factors governing these processes remain to be elucidated. Here, we show that transcription factor Bach2 protein in activated B cells is transiently induced by affinity-related signals and mechanistic target of rapamycin complex 1 (mTORC1)-dependent translation to restrain their expansion and differentiation into plasma cells while promoting memory and germinal center (GC) B cell fates. Affinity-related signals also downregulate Bach2 mRNA expression in activated B cells and their descendant memory B cells. Sustained and higher concentrations of Bach2 antagonize the GC fate. Repression of Bach2 in memory B cells predisposes their cell-fate choices upon memory recall. Our study reveals that differential dynamics of Bach2 protein and transcripts in activated B cells control their cell-fate outcomes and imprint the fates of their descendant effector cells.
Copyright © 2022 The Author(s). Published by Elsevier Inc. All rights reserved.

  • Mus musculus (House mouse)
  • Genetics
  • Immunology and Microbiology
  • Stem Cells and Developmental Biology

HIV-specific humoral immune responses by CRISPR/Cas9-edited B cells.

In The Journal of Experimental Medicine on 3 June 2019 by Hartweger, H., McGuire, A. T., et al.

A small number of HIV-1-infected individuals develop broadly neutralizing antibodies to the virus (bNAbs). These antibodies are protective against infection in animal models. However, they only emerge 1-3 yr after infection, and show a number of highly unusual features including exceedingly high levels of somatic mutations. It is therefore not surprising that elicitation of protective immunity to HIV-1 has not yet been possible. Here we show that mature, primary mouse and human B cells can be edited in vitro using CRISPR/Cas9 to express mature bNAbs from the endogenous Igh locus. Moreover, edited B cells retain the ability to participate in humoral immune responses. Immunization with cognate antigen in wild-type mouse recipients of edited B cells elicits bNAb titers that neutralize HIV-1 at levels associated with protection against infection. This approach enables humoral immune responses that may be difficult to elicit by traditional immunization.
© 2019 Hartweger et al.

  • Mus musculus (House mouse)
  • Immunology and Microbiology
View this product on CiteAb