Product Citations: 6

The miR151 and miR5100 Transfected Bone Marrow Stromal Cells Increase Myoblast Fusion in IGFBP2 Dependent Manner.

In Stem Cell Reviews and Reports on 1 August 2022 by Mierzejewski, B., Michalska, Z., et al.

Bone marrow stromal cells (BMSCs) form a perivascular cell population in the bone marrow. These cells do not present naïve myogenic potential. However, their myogenic identity could be induced experimentally in vitro or in vivo. In vivo, after transplantation into injured muscle, BMSCs rarely fused with myofibers. However, BMSC participation in myofiber reconstruction increased if they were modified by NICD or PAX3 overexpression. Nevertheless, BMSCs paracrine function could play a positive role in skeletal muscle regeneration. Previously, we showed that SDF-1 treatment and coculture with myofibers increased BMSC ability to reconstruct myofibers. We also noticed that SDF-1 treatment changed selected miRNAs expression, including miR151 and miR5100.
Mouse BMSCs were transfected with miR151 and miR5100 mimics and their proliferation, myogenic differentiation, and fusion with myoblasts were analyzed.
We showed that miR151 and miR5100 played an important role in the regulation of BMSC proliferation and migration. Moreover, the presence of miR151 and miR5100 transfected BMSCs in co-cultures with human myoblasts increased their fusion. This effect was achieved in an IGFBP2 dependent manner.
Mouse BMSCs did not present naïve myogenic potential but secreted proteins could impact myogenic cell differentiation. miR151 and miR5100 transfection changed BMSC migration and IGFBP2 and MMP12 expression in BMSCs. miR151 and miR5100 transfected BMSCs increased myoblast fusion in vitro.
© 2022. The Author(s).

  • FC/FACS
  • Mus musculus (House mouse)

Acute myocardial infarction (AMI) remains one of the leading causes of mortality worldwide; however, endothelial progenitor cell (EPC) transplantation has been proposed as a promising treatment strategy for EPC. High levels of tumor necrosis factor-related weak inducer of apoptosis (TWEAK) have been reported in AMI, although its effect on EPCs has not been reported. In the present study, immunofluorescence and flow cytometry were performed to assess the effect of TWEAK in isolated mouse EPCs. Echocardiography was used to evaluate the cardiac function of murine hearts following EPC treatment in the AMI model, while collagen synthesis within the heart tissue was assessed using Masson's trichrome staining. A tube formation assay and Transwell migration assay were performed to investigate the effects of TWEAK on vessel formation and EPC migration in vitro. Angiogenesis and arteriogenesis were assessed in vivo using immunohistochemistry and western blotting was performed to determine the effect of TWEAK-mediated nuclear factor (NF)-κB pathway activation in EPCs. The results revealed that TWEAK promotes EPC migration, tube formation and viability in vitro. Furthermore, TWEAK treatment resulted in improved cardiac function, decreased heart collagen and vasculogenesis in mice with AMI, which was mediated by the TWEAK- fibroblast growth factor-inducible 14 (Fn14)-NF-κB signaling pathway, as determined using Fn14 small interfering (si)RNA and Bay 11-7082 (an NF-κB inhibitor). In summary, the results of the present study suggest that activation of the TWEAK-Fn14-NF-κB signaling pathway exerts a beneficial effect on EPCs for the treatment of AMI.

  • IHC
  • Mus musculus (House mouse)
  • Cardiovascular biology

Improving Combination Osteoporosis Therapy in a Preclinical Model of Heightened Osteoanabolism.

In Endocrinology on 1 September 2017 by Shao, Y., Hernandez-Buquer, S., et al.

Combining anticatabolic agents with parathyroid hormone (PTH) to enhance bone mass has yielded mixed results in osteoporosis patients. Toward the goal of enhancing the efficacy of these regimens, we tested their utility in combination with loss of the transcription factor Nmp4 because disabling this gene amplifies PTH-induced increases in trabecular bone in mice by boosting osteoblast secretory activity. We addressed whether combining a sustained anabolic response with an anticatabolic results in superior bone acquisition compared with PTH monotherapy. Additionally, we inquired whether Nmp4 interferes with anticatabolic efficacy. Wild-type and Nmp4-/- mice were ovariectomized at 12 weeks of age, followed by therapy regimens, administered from 16 to 24 weeks, and included individually or combined PTH, alendronate (ALN), zoledronate (ZOL), and raloxifene (RAL). Anabolic therapeutic efficacy generally corresponded with PTH + RAL = PTH + ZOL > PTH + ALN = PTH > vehicle control. Loss of Nmp4 enhanced femoral trabecular bone increases under PTH + RAL and PTH + ZOL. RAL and ZOL promoted bone restoration, but unexpectedly, loss of Nmp4 boosted RAL-induced increases in femoral trabecular bone. The combination of PTH, RAL, and loss of Nmp4 significantly increased bone marrow osteoprogenitor number, but did not affect adipogenesis or osteoclastogenesis. RAL, but not ZOL, increased osteoprogenitors in both genotypes. Nmp4 status did not influence bone serum marker responses to treatments, but Nmp4-/- mice as a group showed elevated levels of the bone formation marker osteocalcin. We conclude that the heightened osteoanabolism of the Nmp4-/- skeleton enhances the effectiveness of diverse osteoporosis treatments, in part by increasing hyperanabolic osteoprogenitors. Nmp4 provides a promising target pathway for identifying barriers to pharmacologically induced bone formation.
Copyright © 2017 Endocrine Society.

  • Endocrinology and Physiology

Effect of systemic transplantation of bone marrow-derived mesenchymal stem cells on neuropathology markers in APP/PS1 Alzheimer mice.

In Neuropathology and Applied Neurobiology on 1 June 2017 by Naaldijk, Y., Jäger, C., et al.

Mesenchymal stem cells (MSC) have recently attracted interest as a potential basis for a cell-based therapy of AD. We investigated the putative immune-modulatory effects in neuroinflammation of systemic transplantation of MSC into APP/PS1 transgenic mice.
106 MSC were injected into APP/PS1 mice via the tail vein and histological analysis was performed for microglia and amyloid (pE3-Aβ) plaque numbers, glial distribution and pE3-Aβ plaque size. In addition, a biochemical analysis by qPCR for pro-inflammatory, chemoattractant and neurotrophic factors was performed.
MSC are associated with pE3-Aβ plaques. The effects of transplantation on microglia-associated pathology could be observed after 28 days. Animals showed a reduction in microglial numbers in the cortex and in microglia size. Gene expression was reduced for TNF-α, IL-6, MCP-1, and for NGF, in MSC recipients. Also, we investigated for the first time and found no changes in expression of IL-10, CCR5, BDNF, VEGF and IFNγ. PTGER2 expression levels were increased in the hippocampus but were reduced in the cortex of MSC recipients. While there were no transplant-related changes in pE3-Aβ plaque numbers, a reduction in the size of pE3-Aβ plaques was observed in the hippocampus of transplant recipients.
This is the first study to show reduction in pE3-Aβ plaque size. pE3-Aβ plaques have gained attention as potential key participants in AD due to their increased aggregation propensity, the possibility for the initial seeding event, resistance against degradation and neurotoxicity. These findings support the hypothesis that MSC-transplants may affect AD pathology via an immune-modulatory function that includes an effect on microglial cells.
© 2016 British Neuropathological Society.

  • Neuroscience
  • Pathology
  • Stem Cells and Developmental Biology

Therapeutic efficacy of combined vaccination against tumor pericyte-associated antigens DLK1 and DLK2 in mice.

In Oncoimmunology on 14 April 2017 by Fabian, K. P., Chi-Sabins, N., et al.

When compared with vascular cells in normal tissues, pericytes and vascular endothelial cells (VEC) in tumor blood vessels exhibit altered morphology and epigenetic programming that leads to the expression of unique antigens that allow for differential recognition by CD8+ T cells. We have previously shown that the Notch antagonist delta-like homolog 1 (DLK1) is a tumor pericyte-associated antigen expressed in setting of melanoma and a range of carcinomas. In this report, we show that therapeutic vaccination against DLK1 in murine models results in slowed tumor growth, but also to the compensatory expression of the DLK1 homolog, DLK2, by tumor-associated pericytes. Vaccines targeting both DLK1 and DLK2 resulted in superior antitumor benefits in association with improved activation and recruitment of antigen-specific Type 1 CD8+ T cells, reduced presence of myeloid-derived suppressive cells, T regulatory cell and tumor vascular normalization. The antitumor efficacy of vaccines coordinately targeting DLK1 and DLK2 was further improved by inclusion of PD-L1 blockade, thus defining a combination immunotherapy theoretically suitable for the treatment of a broad range of solid (vascularized) cancers.

  • FC/FACS
  • Mus musculus (House mouse)
  • Cancer Research
View this product on CiteAb