Product Citations: 7

Immunogenicity and protective efficacy of the HC009 mRNA vaccine against SARS-CoV-2.

In Frontiers in Immunology on 12 August 2024 by Liu, J., Han, H., et al.

With the rapid global spread of COVID-19 and the continuous emergence of variants, there is an urgent need to develop safe and effective vaccines. Here, we developed a novel mRNA vaccine, HC009, based on new formulation by the QTsome delivery platform. Immunogenicity results showed that the prime-boost immunization strategy with HC009 was able to induce robust and durable humoral immunity, as well as Th1-biased cellular responses in rodents or non-human primates (NHPs). After further challenge with live SARS-CoV-2 virus, HC009 provided adequate protection against virus infection in hACE2 transgenic mice. Therefore, HC009 could provide significant immune protection against SARS-CoV-2.
Copyright © 2024 Liu, Han, Yang, Zhang, Li, Chen, Wu, Zhao and Yang.

  • Rattus norvegicus (Rat)
  • COVID-19
  • Genetics
  • Immunology and Microbiology

Many natural extracts have been shown to minimize the toxicity of doxorubicin (Dox). Low piperine Piper nigrum L. (Piperaceae) extract (PFPE) is a natural extract containing many types of antioxidants that may reduce Dox toxicities.
To evaluate the effect of PFPE in attenuating the side effects of Dox.
Tumour-bearing Sprague Dawley rats were divided into five groups including normal, vehicle, 100 mg/kg BW of PFPE plus 2 mg/kg BW of Dox (P100 + Dox), 100 mg/kg BW of PFPE plus 2 mg/kg BW of Dox (P200 + Dox) and Dox. Rats were treated with Dox and/or PFPE three times/week for 4 weeks. Tumour burden, blood parameters, weight of internal organs and immunological data were investigated.
The addition of 200 mg/kg PFPE significantly restored the levels of AST from 174.60 ± 45.67 U/L in the Dox group near to normal levels at 109.80 ± 4.99 U/L. The combination of PFPE and Dox also decreased the levels of CXCL7, TIMP-1, sICAM-1 and l-selectin about 1.4-1.6-fold compared to Dox group. Feeding rats with 200 mg/kg BW of PFPE combination with Dox slightly increased Th1 from 161.67 ± 14.28 cells in Dox group to 200.75 ± 5.8 cells meanwhile suppressed Treg from 3088 ± 78 cells in Dox to 2561 ± 71 cells.
This study showed that PFPE ameliorated Dox toxicity in many aspects indicating the role of antioxidant and other substances in the extract on toxicity attenuation. This suggested the using of PFPE may be valuable for Dox treated patients.

  • FC/FACS
  • Rattus norvegicus (Rat)
  • Cancer Research
  • Cardiovascular biology
  • Immunology and Microbiology

Mastomys natalensis Has a Cellular Immune Response Profile Distinct from Laboratory Mice.

In Viruses on 22 April 2021 by Tang-Huau, T. L., Rosenke, K., et al.

The multimammate mouse (Mastomys natalensis; M. natalensis) has been identified as a major reservoir for multiple human pathogens including Lassa virus (LASV), Leishmania spp., Yersinia spp., and Borrelia spp. Although M. natalensis are related to well-characterized mouse and rat species commonly used in laboratory models, there is an absence of established assays and reagents to study the host immune responses of M. natalensis. As a result, there are major limitations to our understanding of immunopathology and mechanisms of immunological pathogen control in this increasingly important rodent species. In the current study, a large panel of commercially available rodent reagents were screened to identify their cross-reactivity with M. natalensis. Using these reagents, ex vivo assays were established and optimized to evaluate lymphocyte proliferation and cytokine production by M. natalensis lymphocytes. In contrast to C57BL/6J mice, lymphocytes from M. natalensis were relatively non-responsive to common stimuli such as phytohaemagglutinin P and lipopolysaccharide. However, they readily responded to concanavalin A stimulation as indicated by proliferation and cytokine production. In summary, we describe lymphoproliferative and cytokine assays demonstrating that the cellular immune responses in M. natalensis to commonly used mitogens differ from a laboratory-bred mouse strain.

  • Immunology and Microbiology

IgD-Fc-Ig fusion protein, a new biological agent, is constructed by linking a segment of human IgD-Fc with a segment of human IgG1-Fc, which specifically blocks the IgD-IgDR pathway and selectively inhibits the abnormal proliferation, activation, and differentiation of T cells. In this study we investigated whether IgD-Fc-Ig exerted therapeutic effects in collagen-induced arthritis (CIA) rats. CIA rats were treated with IgD-Fc-Ig (1, 3, and 9 mg/kg) or injected with biological agents etanercept (3 mg/kg) once every 3 days for 40 days. In the PBMCs and spleen lymphocytes of CIA rats, both T and B cells exhibited abnormal proliferation; the percentages of CD3+ total T cells, CD3+CD4+ Th cells, CD3+CD4+CD25+-activated Th cells, Th1(CD4+IFN-γ+), and Th17(CD4+IL-17+) were significantly increased, whereas the Treg (CD4+CD25+Foxp3+) cell percentage was decreased. IgD-Fc-Ig administration dose-dependently decreased the indicators of arthritis; alleviated the histopathology of spleen and joint; reduced serum inflammatory cytokines levels; decreased the percentages of CD3+ total T cells, CD3+CD4+ Th cells, CD3+CD4+CD25+-activated Th cells, Th1 (CD4+IFN-γ+), and Th17(CD4+IL-17+); increased Treg (CD4+CD25+Foxp3+) cell percentage; and down-regulated the expression of key molecules in IgD-IgDR-Lck-NF-κB signaling (p-Lck, p-ZAP70, p-P38, p-NF-κB65). Treatment of normal T cells with IgD (9 μg/mL) in vitro promoted their proliferation. Co-treatment with IgD-Fc-Ig (0.1-10 μg/mL) dose-dependently decreased IgD-stimulated T cell subsets percentages and down-regulated the IgD-IgDR-Lck-NF-κB signaling. In summary, this study demonstrates that IgD-Fc-Ig alleviates CIA and regulates the functions of T cells through inhibiting IgD-IgDR-Lck-NF-κB signaling.

  • Rattus norvegicus (Rat)
  • Immunology and Microbiology
  • Pharmacology

C-type lectin receptors Mcl and Mincle control development of multiple sclerosis-like neuroinflammation.

In The Journal of Clinical Investigation on 3 February 2020 by N'diaye, M., Brauner, S., et al.

Pattern recognition receptors (PRRs) are crucial for responses to infections and tissue damage; however, their role in autoimmunity is less clear. Herein we demonstrate that 2 C-type lectin receptors (CLRs) Mcl and Mincle play an important role in the pathogenesis of experimental autoimmune encephalomyelitis (EAE), an animal model of multiple sclerosis (MS). Congenic rats expressing lower levels of Mcl and Mincle on myeloid cells exhibited a drastic reduction in EAE incidence. In vivo silencing of Mcl and Mincle or blockade of their endogenous ligand SAP130 revealed that these receptors' expression in the central nervous system is crucial for T cell recruitment and reactivation into a pathogenic Th17/GM-CSF phenotype. Consistent with this, we uncovered MCL- and MINCLE-expressing cells in brain lesions of MS patients and we further found an upregulation of the MCL/MINCLE signaling pathway and an increased response following MCL/MINCLE stimulation in peripheral blood mononuclear cells from MS patients. Together, these data support a role for CLRs in autoimmunity and implicate the MCL/MINCLE pathway as a potential therapeutic target in MS.

  • FC/FACS
  • Rattus norvegicus (Rat)
View this product on CiteAb