Product Citations: 4

GM-CSF Promotes the Development of Dysfunctional Vascular Networks in Moyamoya Disease.

In Neuroscience Bulletin on 1 April 2024 by Li, H., Cao, X., et al.

Moyamoya disease (MMD) is a chronic occlusive cerebrovascular disease with the development of a network of abnormal vessels. Immune inflammation is associated with the occurrence and development of MMD. However, the mechanisms underlying the formation of the abnormal vascular network remain unclear. Twenty-eight patients with MMD, 26 ischemic stroke patients, and 26 unrelated healthy volunteers were enrolled in this study The data showed that the levels of granulocyte-macrophage colony-stimulating factor (GM-CSF) were higher in MMD patients than in healthy controls (P <0.01), and GM-CSF was mainly from Th1 and Th17 cells in MMD. We found that increased GM-CSF drove monocytes to secrete a series of cytokines associated with angiogenesis, inflammation, and chemotaxis. In summary, our findings demonstrate for the first time the important involvement of GM-CSF in MMD and that GM-CSF is an important factor in the formation of abnormal vascular networks in MMD.
© 2023. Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences.

There is great need for vaccines against tuberculosis (TB) more efficacious than the licensed BCG. Our goal was to identify new vaccine benchmarks by identifying immune responses that distinguish individuals able to eradicate the infection (TB-resisters) from individuals with latent infection (LTBI-participants). TB-resisters had higher frequencies of circulating CD8+ glucose monomycolate (GMM)+ Granzyme-B+ T cells than LTBI-participants and higher proportions of polyfunctional conventional and nonconventional T cells expressing Granzyme-B and/or PD-1 after ex vivo M. tuberculosis stimulation of blood mononuclear cells. LTBI-participants had higher expression of activation markers and cytokines, including IL10, and IFNγ. An exploratory analysis of BCG-recipients with minimal exposure to TB showed absence of CD8+GMM+Granzyme-B+ T cells, lower or equal proportions of Granzyme-B+PD-1+ polyfunctional T cells than TB-resisters and higher or equal than LTBI-participants. In conclusion, high Granzyme-B+PD-1+ T cell responses to M. tuberculosis and, possibly, of CD8+GMM+Granzyme-B+ T cells may be desirable for new TB vaccines.
© 2023 The Authors.

  • Homo sapiens (Human)
  • Immunology and Microbiology

The Cytokine IL-17A Limits Th17 Pathogenicity via a Negative Feedback Loop Driven by Autocrine Induction of IL-24.

In Immunity on 18 August 2020 by Chong, W. P., Mattapallil, M. J., et al.

Dysregulated Th17 cell responses underlie multiple inflammatory and autoimmune diseases, including autoimmune uveitis and its animal model, EAU. However, clinical trials targeting IL-17A in uveitis were not successful. Here, we report that Th17 cells were regulated by their own signature cytokine, IL-17A. Loss of IL-17A in autopathogenic Th17 cells did not reduce their pathogenicity and instead elevated their expression of the Th17 cytokines GM-CSF and IL-17F. Mechanistic in vitro studies revealed a Th17 cell-intrinsic autocrine loop triggered by binding of IL-17A to its receptor, leading to activation of the transcription factor NF-κB and induction of IL-24, which repressed the Th17 cytokine program. In vivo, IL-24 treatment ameliorated Th17-induced EAU, whereas silencing of IL-24 in Th17 cells enhanced disease. This regulatory pathway also operated in human Th17 cells. Thus, IL-17A limits pathogenicity of Th17 cells by inducing IL-24. These findings may explain the disappointing therapeutic effect of targeting IL-17A in uveitis.
Published by Elsevier Inc.

  • Endocrinology and Physiology
  • Immunology and Microbiology

The dynamics of mucosal-associated invariant T cells in multiple sclerosis.

In SpringerPlus on 19 August 2016 by Sugimoto, C., Hirotani, M., et al.

Multiple sclerosis (MS) is an autoimmune disease characterized by inflammatory demyelination, gliosis and axonal loss in the Central Nervous System. Although the etiology of the disease has remained enigmatic, recent studies have suggested a role of the innate-like T cells, called Mucosal Associated Invariant T cells (MAITs) in the pathophysiology. In the present study, we have analyzed the relative frequency of MAITs and the expression of the cell surface antigens in MAITs to seek a possible link to the disease.
There was little difference in the frequency of total MAITs between healthy donors (HDs) and untreated MS patients, whereas the latter harbored more CD8(lo/neg) (DN) MAITs concomitant with a decrease in CD8(high) MAITs and in CD4 MAITs compared with those in HDs. While the expression of CCR5, CCR6, CD95, CD127, and CD150 has increased in untreated subjects compared with that in HDs, CD45RO has declined in untreated subjects in both DN MAITs and CD8(hi) MAITs. FTY720 therapy has increased the relative frequency of total MAITs in a time-dependent fashion up to 2 years. Intriguingly, FTY720 therapy for 3 years reversed the above phenotype, engendering more CD8(high) MAITs accompanied with decreased DN MAITs. FTY720 therapy affected the cytokine production from CD4 T cells and also enhanced the relative frequency of cells producing both TNF-α and IFN-γ from MAITs, CD8 T cells, and CD4 T cells compared with that in untreated subjects.
FTY 720 therapy enhanced the relative frequency of MAITs in MS patients in a time-dependent manner. Although the expression of CD8 in MAITs has been affected early by FTY720, longer treatment has reversed the phenotypic change. These data demonstrated that FTY720 induced dynamic change in the relative frequency and in the phenotype of MAITs in MS.

  • Immunology and Microbiology
View this product on CiteAb