Product Citations: 19

Glycogen synthase kinase-3 is essential for Tregdevelopment and function

Preprint on BioRxiv : the Preprint Server for Biology on 4 October 2024 by Kandasamy, M., Andrew, H. F., et al.

T regs are critical regulators of the immune response, but the cellular signalling pathways that control their development and homeostasis remain to be determined. We found that glycogen synthase kinase-3 (GSK3), a kinase which integrates signals from AKT and mTOR, was essential for T reg development, restraining fatal autoimmunity. Loss of Gsk3 led to metabolic rewiring in T regs , with disordered nucleotide metabolism and activation of OxPhos. Acute deletion of Gsk3 did not affect T reg frequency or numbers, but induced an effector gene expression program, and led to the formation of populations with pro-inflammatory signatures. The loss of Gsk3 in T regs profoundly enhanced anti-tumoral immune responses and suppressed tumour growth.

PTPRZ1-targeting RNA CAR T cells exert antigen-specific and bystander antitumor activity in glioblastoma.

In Cancer Immunology Research on 13 September 2024 by Martínez, D., Marinari, E., et al.

The great success of chimeric antigen receptor (CAR) T-cell therapy in the treatment of patients with B-cell malignancies has prompted its translation to solid tumors. In the case of glioblastoma (GBM), clinical trials have shown modest efficacy, but efforts to develop more effective anti-GBM CAR T cells are ongoing. In this study, we selected PTPRZ1 as a target for GBM treatment. We isolated six anti-human PTPRZ1 scFv from a human phage display library and produced 2nd generation CAR T cells in an RNA format. Patient-derived GBM PTPRZ1-knock-in cell lines were used to select the CAR construct that showed high cytotoxicity while consistently displaying high CAR expression (471_28z). CAR T cells incorporating 471_28z were able to release IFN-γ, IL-2, TNF-α, Granzyme B, IL-17A, IL-6, and soluble FasL, and displayed low tonic signaling. Additionally, they maintained an effector memory phenotype after in vitro killing. In addition, 471_28z CAR T cells displayed strong bystander killing against PTPRZ1-negative cell lines after pre-activation by PTPRZ1-positive tumor cells but did not kill antigen-negative non-tumor cells. In an orthotopic xenograft tumor model using NSG mice, a single dose of anti-PTPRZ1 CAR T cells significantly delayed tumor growth. Taken together, these results validate PTPRZ1 as a GBM target and prompt the clinical translation of anti-PTPRZ1 CAR T cells.

  • FC/FACS
  • Genetics
  • Immunology and Microbiology

The RNA binding protein IGF2BP2/IMP2 alters the cargo of cancer cell-derived extracellular vesicles supporting tumor-associated macrophages.

In Cell Communication and Signaling : CCS on 27 June 2024 by Mashayekhi, V., Schomisch, A., et al.

Tumor cells release extracellular vesicles (EVs) that contribute to the polarization of macrophages towards tumor-associated macrophages (TAMs). High expression levels of the RNA binding protein IGF2BP2/IMP2 are correlated with increased tumor cell proliferation, invasion, and poor prognosis in the clinic. However, there is a lack of understanding of whether IMP2 affects the cargo of cancer cell-derived EVs, thereby modulating macrophage polarization.
EVs were isolated from IMP2-expressing HCT116 parental cells (WT) and CRISPR/Cas9 IMP2 knockout (KO) cells. EVs were characterized according to MISEV guidelines, microRNA cargo was assessed by microRNA-Seq, and the protein cargo was analyzed by proteomics. Primary human monocyte-derived macrophages (HMDMs) were polarized by EVs, and the expression of genes and surface markers was assessed using qPCR and flow cytometry, respectively. Morphological changes of macrophages, as well as the migratory potential of cancer cells, were assessed by the Incucyte® system and macrophage matrix degradation potential by zymography. Changes in the metabolic activity of macrophages were quantified using a Seahorse® analyzer. For in vivo studies, EVs were injected into the yolk sac of zebrafish larvae, and macrophages were isolated by fluorescence-activated cell sorting.
EVs from WT and KO cells had a similar size and concentration and were positive for 25 vesicle markers. The expression of tumor-promoting genes was higher in macrophages polarized with WT EVs than KO EVs, while the expression of TNF and IL6 was reduced. A similar pattern was observed in macrophages from zebrafish larvae treated in vivo. WT EV-polarized macrophages showed a higher abundance of TAM-like surface markers, higher matrix degrading activity, as well as a higher promotion of cancer cell migration. MicroRNA-Seq revealed a significant difference in the microRNA composition of WT and KO EVs, particularly a high abundance of miR-181a-5p in WT EVs, which was absent in KO EVs. Inhibitors of macropinocytosis and phagocytosis antagonized the delivery of miR-181a-5p into macrophages and the downregulation of the miR-181a-5p target DUSP6. Proteomics data showed differences in protein cargo in KO vs. WT EVs, with the differentially abundant proteins mainly involved in metabolic pathways. WT EV-treated macrophages exhibited a higher basal oxygen consumption rate and a lower extracellular acidification rate than KO EV-treated cells.
Our results show that IMP2 determines the cargo of EVs released by cancer cells, thereby modulating the EVs' actions on macrophages. Expression of IMP2 is linked to the secretion of EVs that polarize macrophages towards a tumor-promoting phenotype.
© 2024. The Author(s).

  • FC/FACS
  • Cancer Research
  • Endocrinology and Physiology
  • Genetics

Umbilical cord blood-derived neutrophils possess higher viability than peripheral blood derived neutrophils.

In American Journal of Cancer Research on 9 April 2024 by Liu, Q., Wu, Y., et al.

Neutrophils, a primary type of immune cell, play critical roles in numerous biological processes. Both umbilical cord blood (UCB) and peripheral blood are rich in neutrophils. UCB is more abundant than peripheral blood, with cells generally at a more immature stage. However, comparative data between these two cell sources is lacking. This study aims to elucidate differences between UCB-derived neutrophils (UCBN) and peripheral blood-derived neutrophils (PBN). UCBN and PBN were isolated from fresh human umbilical cord blood and peripheral blood, respectively. Transcriptomic profiling was performed and compared against neutrophil RNA from three different donors. Bioinformatics analysis was employed to compare cell phenotypes. A cytokine cocktail (IFN-β, IFN-γ, and LPS) was used to activate UCBN and PBN in vitro. A united multi-omic approach, combining transcriptomic and proteomic analysis, was followed by experimental validation through flow cytometry, cell killing assays, and proteome profiler array to verify cell functions. Transcriptomic analysis revealed that the most upregulated genes in freshly isolated umbilical cord blood neutrophils (UCBN) compared to peripheral blood neutrophils (PBN) predominantly involve neutrophil activation and cell-killing functions. Validation through flow cytometry and cell-killing experiments demonstrated that highly viable UCBN exhibited significantly stronger ovarian tumor cell-killing activity in vitro compared to PBN. Both transcriptomic and proteomic analyses indicated that the primary upregulated genes in activated UCBN are chiefly involved in biological processes related to the regulation of cytokine secretion. Integrative multi-omic analysis, including a proteome profiler array, confirmed that UCBN indeed secrete elevated levels of cytokines. In conclusion: UCBN shows higher viability and cellular activity compared with PBN, particularly in tumor cell-killing and cytokine secretion.
AJCR Copyright © 2024.

  • Homo sapiens (Human)
  • Cancer Research
  • Cardiovascular biology

PTPRZ1-targeting RNA CAR-T cells exert antigen-specific and bystander antitumor activity in glioblastoma

Preprint on BioRxiv : the Preprint Server for Biology on 23 December 2023 by Martínez Bedoya, D., Marinari, E., et al.

The great success of chimeric antigen receptor (CAR)-T cell therapy in B-cell malignancies has prompted its translation to solid tumors. In the case of glioblastoma (GBM), clinical trials have shown modest efficacy, but anti-GBM CAR-T cells are being intensely developed. In this study, we selected PTPRZ1 as an attractive new target for GBM treatment. We isolated six anti-human PTPRZ1 scFv from a human phage display library and produced 2 nd generation CAR-T cells in an RNA format. Patient-derived GBM PTPRZ1-knock-in cell lines were used to select the CAR construct (471_28z), which showed high cytotoxicity while consistently displaying high CAR expression. CAR-T cells incorporating 471_28z were able to release IFN-γ, IL-2, TNF-α, Granzyme B, IL-17A, IL-6, and soluble FasL, and displayed low tonic signaling. Additionally, they maintained an effector memory phenotype after in vitro killing. Importantly, 471_28z CAR-T cells displayed strong bystander killing against PTPRZ1-negative cell lines after pre-activation by PTPRZ1-positive tumor cells, but did not kill antigen-negative non-tumor cells. In an orthotopic xenograft tumor model using NSG mice, a single dose of anti-PTPRZ1 CAR-T cells significantly delayed tumor growth. Taken together, these results validate the use of PTPRZ1 as a new GBM target and prompt the use of anti-PTPRZ1 CAR-T cells for clinical translation.

  • Genetics
  • Immunology and Microbiology
View this product on CiteAb