Product Citations: 17

Unveiling the crucial role of ferroptosis in host resistance to streptococcus agalactiae infection.

In Cell Death Discovery on 1 October 2024 by Yi, J. X., Sun, Z. Y., et al.

IL-1β represents an important inflammatory factor involved in the host response against GBS infection. Prior research has suggested a potential involvement of IL-1β in the process of ferroptosis. However, the relationship between IL-1β and ferroptosis in the context of anti-GBS infection remains uncertain. This research demonstrates that the occurrence of ferroptosis is essential for the host's defense against GBS infection in a mouse model of abdominal infection, with peritoneal macrophages identified as the primary cells undergoing ferroptosis. Further research indicates that IL-1β induces lipid oxidation in macrophages through the upregulation of pathways related to lipid oxidation. Concurrently, IL-1β is not only involved in the initiation of ferroptosis in macrophages, but its production is intricately linked to the onset of ferroptosis. Ultimately, we posit that ferroptosis acts as a crucial initiating factor in the host response to GBS infection, with IL-1β playing a significant role in the resistance to infection by serving as a key inducer of ferroptosis.
© 2024. The Author(s).

  • Mus musculus (House mouse)
  • Immunology and Microbiology

IKKε and TBK1 prevent RIPK1 dependent and independent inflammation.

In Nature Communications on 2 January 2024 by Eren, R. O., Kaya, G. G., et al.

TBK1 and IKKε regulate multiple cellular processes including anti-viral type-I interferon responses, metabolism and TNF receptor signaling. However, the relative contributions and potentially redundant functions of IKKε and TBK1 in cell death, inflammation and tissue homeostasis remain poorly understood. Here we show that IKKε compensates for the loss of TBK1 kinase activity to prevent RIPK1-dependent and -independent inflammation in mice. Combined inhibition of IKKε and TBK1 kinase activities caused embryonic lethality that was rescued by heterozygous expression of kinase-inactive RIPK1. Adult mice expressing kinase-inactive versions of IKKε and TBK1 developed systemic inflammation that was induced by both RIPK1-dependent and -independent mechanisms. Combined inhibition of IKKε and TBK1 kinase activities in myeloid cells induced RIPK1-dependent cell death and systemic inflammation mediated by IL-1 family cytokines. Tissue-specific studies showed that IKKε and TBK1 were required to prevent cell death and inflammation in the intestine but were dispensable for liver and skin homeostasis. Together, these findings revealed that IKKε and TBK1 exhibit tissue-specific functions that are important to prevent cell death and inflammation and maintain tissue homeostasis.
© 2024. The Author(s).

  • Mus musculus (House mouse)
  • Immunology and Microbiology

Tissue-specific differences in the assembly of mitochondrial Complex I are revealed by a novel ENU mutation in ECSIT.

In Cardiovascular Research on 16 October 2023 by Nicol, T., Falcone, S., et al.

Mitochondrial Complex I assembly (MCIA) is a multi-step process that necessitates the involvement of a variety of assembly factors and chaperones to ensure that the final active enzyme is correctly assembled. The role of the assembly factor evolutionarily conserved signalling intermediate in the toll (ECSIT) pathway was studied across various murine tissues to determine its role in this process and how this varied between tissues of varying energetic demands. We hypothesized that many of the known functions of ECSIT were unhindered by the introduction of an ENU-induced mutation, while its role in Complex I assembly was affected on a tissue-specific basis.
Here, we describe a mutation in the MCIA factor ECSIT that reveals tissue-specific requirements for ECSIT in Complex I assembly. MCIA is a multi-step process dependent on assembly factors that organize and arrange the individual subunits, allowing for their incorporation into the complete enzyme complex. We have identified an ENU-induced mutation in ECSIT (N209I) that exhibits a profound effect on Complex I component expression and assembly in heart tissue, resulting in hypertrophic cardiomyopathy in the absence of other phenotypes. The dysfunction of Complex I appears to be cardiac specific, leading to a loss of mitochondrial output as measured by Seahorse extracellular flux and various biochemical assays in heart tissue, while mitochondria from other tissues were unaffected.
These data suggest that the mechanisms underlying Complex I assembly and activity may have tissue-specific elements tailored to the specific demands of cells and tissues. Our data suggest that tissues with high-energy demands, such as the heart, may utilize assembly factors in different ways to low-energy tissues in order to improve mitochondrial output. These data have implications for the diagnosis and treatment of various disorders of mitochondrial function as well as cardiac hypertrophy with no identifiable underlying genetic cause.
© The Author(s) 2023. Published by Oxford University Press on behalf of the European Society of Cardiology.

  • Cardiovascular biology
  • Cell Biology

Cellular and molecular dynamics in the lungs of neonatal and juvenile mice in response to E. coli.

In eLife on 2 June 2023 by McGrath-Morrow, S. A., Venezia, J., et al.

Bacterial pneumonia in neonates can cause significant morbidity and mortality when compared to other childhood age groups. To understand the immune mechanisms that underlie these age-related differences, we employed a mouse model of Escherichia coli pneumonia to determine the dynamic cellular and molecular differences in immune responsiveness between neonates (PND 3-5) and juveniles (PND 12-18), at 24, 48, and 72 hr. Cytokine gene expression from whole lung extracts was also quantified at these time points, using quantitative RT-PCR. E. coli challenge resulted in rapid and significant increases in neutrophils, monocytes, and γδT cells, along with significant decreases in dendritic cells and alveolar macrophages in the lungs of both neonates and juveniles. E. coli-challenged juvenile lung had significant increases in interstitial macrophages and recruited monocytes that were not observed in neonatal lungs. Expression of IFNγ-responsive genes was positively correlated with the levels and dynamics of MHCII-expressing innate cells in neonatal and juvenile lungs. Several facets of immune responsiveness in the wild-type neonates were recapitulated in juvenile MHCII-/- juveniles. Employing a pre-clinical model of E. coli pneumonia, we identified significant differences in the early cellular and molecular dynamics in the lungs that likely contribute to the elevated susceptibility of neonates to bacterial pneumonia and could represent targets for intervention to improve respiratory outcomes and survivability of neonates.
© 2023, McGrath-Morrow et al.

  • Immunology and Microbiology

Prenylcysteine oxidase 1 like protein is required for neutrophil bactericidal activities.

In Nature Communications on 13 May 2023 by Petenkova, A., Auger, S. A., et al.

The bactericidal function of neutrophils is dependent on a myriad of intrinsic and extrinsic stimuli. Using systems immunology approaches we identify microbiome- and infection-induced changes in neutrophils. We focus on investigating the Prenylcysteine oxidase 1 like (Pcyox1l) protein function. Murine and human Pcyox1l proteins share ninety four percent aminoacid homology revealing significant evolutionary conservation and implicating Pcyox1l in mediating important biological functions. Here we show that the loss of Pcyox1l protein results in significant reductions in the mevalonate pathway impacting autophagy and cellular viability under homeostatic conditions. Concurrently, Pcyox1l CRISPRed-out neutrophils exhibit deficient bactericidal properties. Pcyox1l knock-out mice demonstrate significant susceptibility to infection with the gram-negative pathogen Psuedomonas aeruginosa exemplified through increased neutrophil infiltrates, hemorrhaging, and reduced bactericidal functionality. Cumulatively, we ascribe a function to Pcyox1l protein in modulation of the prenylation pathway and suggest connections beween metabolic responses and neutrophil functionality.
© 2023. The Author(s).

  • FC/FACS
View this product on CiteAb