Product Citations: 11

Uvaol attenuates TGF-β1-induced epithelial-mesenchymal transition in human alveolar epithelial cells by modulating expression and membrane localization of β-catenin.

In Frontiers in Pharmacology on 22 January 2025 by Patrícia Gonçalves Tenório, L., Xavier, F. H. D. C., et al.

The epithelial-mesenchymal transition (EMT) is a biological process in which epithelial cells change into mesenchymal cells with fibroblast-like characteristics. EMT plays a crucial role in the progression of fibrosis. Classical inducers associated with the maintenance of EMT, such as TGF-β1, have become targets of several anti-EMT therapeutic strategies. Natural products from the pentacyclic triterpene class have emerged as promising elements in inhibiting EMT. Uvaol is a pentacyclic triterpene found in olive trees (Olea europaea L.) known for its anti-inflammatory, antioxidant, and antiproliferative properties. Yet, its effect on the TGF-β1-induced EMT in alveolar epithelial cells is unknown. The present study aimed to investigate the impact of uvaol upon TGF-β1-induced EMT in a cultured A549 human alveolar epithelial cell line, a classic in vitro model for studies of EMT. Changes in cell shape were measured using phase-contrast and confocal microscopy, whereas protein expression levels were measured using immunofluorescence, flow cytometry, and Western blotting. We also performed wound scratch experiments to explore its effects on cell migration. Uvaol had no significant cytotoxic effects on A549 cells. By contrast, the changes in the cell morphology consistent with TGF-β1-induced EMT were largely suppressed by treatment with uvaol. In addition, increased contents of mesenchymal markers, namely, vimentin, N-cadherin, and fibronectin in TGF-β1-induced A549 cells, were downregulated by uvaol treatment. Furthermore, the TGF-β1-induced migration of A549 cells was significantly suppressed by uvaol. Mechanistically, uvaol prevented the nuclear translocation of β-catenin and reduced the TGF-β1-induced levels of ZEB1 in A549 cells. These results provide compelling evidence that uvaol inhibits EMT by regulating proteins related to the mesenchymal profile in human alveolar epithelial cells, likely by modulating β-catenin and ZEB1 levels.
Copyright © 2025 Patrícia Gonçalves Tenório, Xavier, Silveira Wagner, Moreira Bagri, Alves Ferreira, Galvani, Mermelstein, Bonomo, Savino and Barreto.

  • Homo sapiens (Human)
  • Pharmacology

Natural killer (NK) cells are a subset of innate lymphoid cells that are inherently capable of recognizing and killing infected or tumour cells. This has positioned NK cells as a promising live drug for tumour immunotherapy, but limited success suggests incomplete knowledge of their killing mechanism. NK cell-mediated killing involves a complex decision-making process based on integrating activating and inhibitory signals from various ligand-receptor repertoires. However, the relative importance of the different activating ligand-receptor interactions in triggering NK killing remains unclear.
We employed a systematic approach combining clinical, in silico, in vitro, and in vivo data analysis to quantify the impact of various activating ligands. Clinical data analysis was conducted using massive pan-cancer data (n = 10,595), where patients with high NK cell levels were stratified using CIBERSORT. Subsequently, multivariate Cox regression and Kaplan-Meier (KM) survival analysis were performed based on activating ligand expression. To examine the impact of ligand expression on NK killing at the cellular level, we assessed surface expression of five major activating ligands (B7H6, MICA/B, ULBP1, ULBP2/5/6, and ULBP3) of human tumour cell lines of diverse origins (n = 33) via flow cytometry (FACs) and their NK cell-mediated cytotoxicity on by calcein-AM assay using human primary NK cells and NK-92 cell lines. Based on this data, we quantified the contribution of each activating ligand to the NK killing activity using mathematical models and Bayesian statistics. To further validate the results, we performed calcein-AM assays upon ligand knockdown and overexpression, conjugation assays, and co-culture assays in activating ligand-downregulated/overexpressed in liquid tumour (LT) cell lines. Moreover, we established LT-xenograft mouse models to assess the efficacy of NK cell targeting toward tumours with dominant ligands.
Through the clinical analysis, we discovered that among nearly all 18 activating ligands, only patients with LT who were NK cell-rich and specifically had higher B7H6 level exhibited a favorable survival outcome (p = 0.0069). This unexpected dominant role of B7H6 was further confirmed by the analysis of datasets encompassing multiple ligands and a variety of tumours, which showed that B7H6 exhibited the highest contribution to NK killing among five representative ligands. Furthermore, LT cell lines (acute myeloid leukemia (AML), B cell lymphoma, and T-acute lymphocytic leukemia (ALL)) with lowered B7H6 demonstrated decreased susceptibility to NK cell-mediated cytotoxicity compared to those with higher levels. Even within the same cell line, NK cells selectively targeted cells with higher B7H6 levels. Finally, LT-xenograft mouse models (n = 24) confirmed that higher B7H6 results in less tumour burden and longer survival in NK cell-treated LT mice (p = 0.0022).
While NK cells have gained attention for their potent anti-tumour effects without causing graft-versus-host disease (GvHD), thus making them a promising off-the-shelf therapy, our limited understanding of NK killing mechanisms has hindered their clinical application. This study illuminates the crucial role of the activating ligand B7H6 in driving NK cell killing, particularly in the context of LT. Therefore, the expression level of B7H6 could serve as a prognostic marker for patients with LT. Moreover, for the development of NK cell-based immunotherapy, focusing on increasing the level of B7H6 on its cognate receptor, NKp30, could be the most effective strategy.
This work was supported by the National Research Council of Science & Technology (NST) grant (CAP-18-02-KRIBB, GTL24021-000), a National Research Foundation grant (2710012258, 2710004815), and an Institute for Basic Science grant (IBS-R029-C3).
Copyright © 2024 The Author(s). Published by Elsevier B.V. All rights reserved.

  • Cancer Research

Radiation-induced FAP + fibroblasts are involved in keloid recurrence after radiotherapy.

In Frontiers in Cell and Developmental Biology on 13 September 2022 by Gao, Y., Hou, X., et al.

Background: Keloid scars (KSs), which are composed of abnormal hyperplastic scar tissue, form during skin wound healing due to excessive fibroblast activation and collagen secretion. Although surgical resection and radiation therapy are used to prevent recurrence, KS recurrence rates range from 15 to 23%, and the underlying mechanism is unclear. Methods: To elucidate the mechanism of keloid recurrence, we established a PDX model and the grafts remained for over 20 weeks after transplantation on the bilateral backs of the NCG mice. Results: RNA-seq revealed that KS tissue gene expression was highly consistent before and after transplantation. Then, one side of the KS graft was irradiated with electron beam therapy (10 Gy), significant increases in vimentin and fibroblast activation protein alpha (FAP) expression were observed after irradiation and were accompanied by severe microvascular destruction. Surprisingly, 4 weeks after irradiation, significantly increased recurrence was observed with increased FAP + tissue and cell cycle regulator expression, resulting in a remarkable altered graft volume. Moreover, irradiation-induced FAP upregulation markedly facilitated radiation resistance and increased cell cycle progression, decreased senescence, and increased energy production. Conclusion: Our findings revealed that irradiation causes increased abundance of FAP + cells, which was associated with cell proliferation and delayed cellular senescence, accompanied by ATP production.
Copyright © 2022 Gao, Hou, Dai, Yang and Chen.

  • FC/FACS

The epithelial-mesenchymal transition (EMT) is considered an essential process for cancer development and metastasis. Sorafenib, a RAF kinase and VEGFR-2 inhibitor, exhibits efficacy against advanced hepatocellular carcinoma (HCC), renal carcinoma, and thyroid cancer. It is well established that transforming growth factor-β (TGF-β) activated EMT is involved in the invasion and metastasis of Hep G2 cells in HCC. In this study, we investigated the effects of sorafenib on various biomarkers associated with EMT using flow cytometry. We found that sorafenib upregulated the epithelial marker E-cadherin and downregulated the mesenchymal marker vimentin. Furthermore, sorafenib downregulated the level of the EMT-inducing transcription factor SNAIL. Our findings provide insights into the mechanisms associated with the anti-EMT effects of VEGFR-2/RAF kinase inhibitors.
© 2021 The Authors.

  • Cancer Research

Although CD133 is a representative cancer stem cell marker, its function in tumor aggressiveness under hypoxia remains unclear. Therefore, the present study aimed to investigate the associations between CD133, the epithelial-mesenchymal transition and distant metastasis in colorectal cancer. CD133+ and CD133- cells were isolated from a single colorectal cancer cell line LoVo, and their adhesive and migratory properties were compared under hypoxic conditions. Immunostaining analysis was performed to determine CD133 expression in clinical samples of primary tumors, as well as liver and peritoneal metastases. Under hypoxia, the expression levels of hypoxia-inducible factor (HIF)-1α and the epithelial-mesenchymal transition markers N-cadherin and vimentin were significantly higher in the CD133+ compared with those in the CD133- cells. Furthermore, the migratory ability of the CD133+ cells was higher compared with that of the CD133- cells under hypoxia. By contrast, the expression levels of β1 integrin were significantly lower in the CD133+ cells under hypoxia compared with those in the CD133- cells. Immunohistochemical analysis of clinical samples revealed that the levels of CD133 expression in metastatic tissues from the liver were significantly higher compared with those in the corresponding primary tumors, whereas CD133 expression levels in peritoneal metastatic tissues were significantly lower compared with those in the corresponding primary tumors. In conclusion, compared with the CD133- cells, the CD133+ colorectal cancer cells exhibited enhanced levels of HIF-1α expression and tumor cell migration during hypoxia. This was associated with an increased ability of epithelial-mesenchymal transition, possibly leading to the acquisition of an increased hematogenous metastatic potential and eventually resulting in liver metastasis. High β1 integrin expression levels in the CD133- cells under hypoxia may serve a key role in cell adhesion to the peritoneum, resulting in peritoneal metastasis.
Copyright: © Okada et al.

  • FC/FACS
  • Homo sapiens (Human)
  • Cancer Research
View this product on CiteAb