Product Citations: 13

Design and preclinical assessment of mRNA-1345 prefusion F glycoprotein-encoding mRNA vaccine for respiratory syncytial virus

Preprint on Research Square on 12 December 2024 by Shaw, C. A., Stewart-Jones, G. B. E., et al.

Abstract Respiratory syncytial virus (RSV) is a significant cause of lower respiratory tract disease in young children and older adults. We designed a codon optimized mRNA vaccine, mRNA-1345, that encodes the RSV F-glycoprotein stabilized in the prefusion (preF) conformation and with a deletion at the cytoplasmic tail. mRNA-1345 protein expression was higher in vitro versus previous mRNA-based RSV vaccine candidates evaluated clinically. In rodent models, mRNA-1345 induced a robust neutralizing and preF-biased antibody response, a T helper 1-biased cellular response, and demonstrated dose-dependent protection against RSV challenge with no evidence of enhanced respiratory disease. These findings underscored the potential of mRNA-1345 as an effective RSV vaccine and are substantiated by clinical data demonstrating efficacy of mRNA-1345 in older adults.

  • Mus musculus (House mouse)
  • Genetics
  • Immunology and Microbiology

Antigen mobility regulates the dynamics and precision of antigen capture in the B cell immune synapse

Preprint on BioRxiv : the Preprint Server for Biology on 3 November 2024 by McArthur, H. C. W., Iliopoulou, M., et al.

B cells discriminate antigens in immune synapses by capturing them from antigen-presenting cells. This discrimination relies on the application of mechanical force to B cell receptor (BCR)-antigen bonds, allowing B cells to selectively disrupt low-affinity interactions while internalizing high-affinity antigens. Using DNA-based tension sensors combined with high-resolution imaging, we demonstrate that the magnitude, location, and timing of forces within the immune synapse are influenced by the fluidity of the antigen-presenting membrane. Transitioning antigens from a high-mobility to a low-mobility substrate significantly increases the probability and speed of antigen extraction while also improving affinity discrimination. This shift in antigen mobility also reshapes the synapse architecture, altering spatial patterns of antigen uptake. Despite these adaptations, B cells maintain consistent levels of proximal and downstream signaling pathway activation regardless of antigen mobility. They also efficiently transport internalized antigens to major histocompatibility complex class II (MHCII)-positive compartments for processing. These results demonstrate that B cells mount effective responses to antigens across diverse physical environments, though the characteristics of that environment may influence the speed and accuracy of B cell adaptation during an immune response.

  • Immunology and Microbiology
  • Neuroscience

Researchers who aim to globally analyze the gastrointestinal immune system via flow cytometry have many protocol options to choose from, with specifics generally tied to gut wall layers of interest. To get a clearer idea of the approach we should use on full-thickness colon samples from mice, we first undertook a systematic comparison of three tissue dissociation techniques: two based on enzymatic cocktails and the other one based on manual crushing. Using flow cytometry panels of general markers of lymphoid and myeloid cells, we found that the presence of cell-surface markers and relative cell population frequencies were more stable with the mechanical method. Both enzymatic approaches were associated with a marked decrease of several cell-surface markers. Using mechanical dissociation, we then developed two minimally overlapping panels, consisting of a total of 26 antibodies, for serial profiling of lymphoid and myeloid lineages from the mouse colon in greater detail. Here, we highlight how we accurately delineate these populations by manual gating, as well as the reproducibility of our panels on mouse spleen and whole blood. As a proof-of-principle of the usefulness of our general approach, we also report segment- and life stage-specific patterns of immune cell profiles in the colon. Overall, our data indicate that mechanical dissociation is more suitable and efficient than enzymatic methods for recovering immune cells from all colon layers at once. Additionally, our panels will provide researchers with a relatively simple tool for detailed immune cell profiling in the murine gastrointestinal tract, regardless of life stage or experimental conditions.
© 2024. The Author(s).

  • Mus musculus (House mouse)
  • Immunology and Microbiology

Locoregional monotherapy with heterodimeric interleukin (IL)-15 (hetIL-15) in a triple-negative breast cancer (TNBC) orthotopic mouse model resulted in tumor eradication in 40% of treated mice, reduction of metastasis, and induction of immunological memory against breast cancer cells. hetIL-15 re-shaped the tumor microenvironment by promoting the intratumoral accumulation of cytotoxic lymphocytes, conventional type 1 dendritic cells (cDC1s), and a dendritic cell (DC) population expressing both CD103 and CD11b markers. These CD103intCD11b+DCs share phenotypic and gene expression characteristics with both cDC1s and cDC2s, have transcriptomic profiles more similar to monocyte-derived DCs (moDCs), and correlate with tumor regression. Therefore, hetIL-15, a cytokine directly affecting lymphocytes and inducing cytotoxic cells, also has an indirect rapid and significant effect on the recruitment of myeloid cells, initiating a cascade for tumor elimination through innate and adoptive immune mechanisms. The intratumoral CD103intCD11b+DC population induced by hetIL-15 may be targeted for the development of additional cancer immunotherapy approaches.
Published by Elsevier Inc.

  • Mus musculus (House mouse)
  • Cancer Research
  • Immunology and Microbiology

Single-cell transcriptome analysis reveals cellular heterogeneity in mouse intra- and extra articular ligaments.

In Communications Biology on 12 November 2022 by Ishibashi, K., Ikegami, K., et al.

Ligaments are collagenous connective tissues that connect bones. Injury of knee ligaments, namely anterior cruciate ligament (ACL) and medial collateral ligament (MCL), is common in athletes. Both ligaments have important functions, but distinct regeneration capacities. The capacity for recovery after injury also diminishes with age. However, cellular heterogeneity in the ligaments remains unclear. Here, we profiled the transcriptional signatures of ACL and MCL cells in mice using single-cell RNA sequencing. These ligaments comprise three fibroblast types expressing Col22a1, Col12a1, or Col14a1, but have distinct localizations in the tissue. We found substantial heterogeneity in Col12a1- and Col14a1-positive cells between ACL and MCL. Gene Ontology analysis revealed that angiogenesis- and collagen regulation-related genes were specifically enriched in MCL cells. Furthermore, we identified age-related changes in cell composition and gene expression in the ligaments. This study delineates cellular heterogeneity in ligaments, serving as a foundation for identifying potential therapeutic targets for ligament injuries.
© 2022. The Author(s).

View this product on CiteAb