Product Citations: 16

CD4+ T cells license Kupffer cells to reverse CD8+ T cell dysfunction induced by hepatocellular priming.

In Nature Immunology on 30 June 2025 by Venzin, V., Beccaria, C. G., et al.

Chronic hepatitis B virus (HBV) infection is marked by dysfunctional HBV-specific CD8+ T cells, and restoring their effector activity is a major therapeutic goal. Here, we generated HBV-specific CD4+ T cell receptor transgenic mice to show that CD4+ effector T cells can prevent and reverse the CD8⁺ T cell dysfunction induced by hepatocellular priming. This rescue enhances antiviral CD8+ T cell function and suppresses viral replication. CD4+ T cell help occurs directly within the liver, independent of secondary lymphoid organs, and requires local antigen recognition. Kupffer cells, rather than dendritic cells, are the critical antigen-presenting platform. CD4+ T cells license Kupffer cells via CD40-CD40L interactions, triggering interleukin (IL)-12 and IL-27 production. IL-12 expands the CD4+ T cell pool, while IL-27 is essential for CD8+ T cell rescue. Exogenous IL-27 similarly restores HBV-specific CD8+ T cell function in mice and in T cells isolated from chronically infected patients. These findings identify IL-27 as a tractable immunotherapeutic target in chronic HBV infection.
© 2025. The Author(s).

  • Immunology and Microbiology

Maternal Immunoglobulin A regulates the development of the neonatal microbiota and intestinal microbiota-specific CD4+ T cell responses

Preprint on BioRxiv : the Preprint Server for Biology on 11 June 2024 by Abbott, D. A., Rai, A. T., et al.

Breast milk is a complex mixture of nutrients and bioactives that promote infant development and decrease the incidence of chronic inflammatory disease. We investigated the role of one milk-derived bioactive, Immunoglobulin A (IgA) on the developing small intestinal microbiota and immune system. We demonstrate that early in life, milk-derived IgA suppressed colonization of the small intestine by Enterobacteriaceae and regulated the maturation of the small intestinal epithelium and the development of intestinal IL-17-producing CD4 + T cells. Enterobacteriaceae - specific CD4 + T cells, induced in the first weeks of life in the absence of milk-derived IgA, persisted in the intestine as memory T cells that can contribute to inflammatory disease later in life. Our study suggests that milk-derived IgA shapes mucosal immunity by regulating the neonatal microbiota thus preventing the development of long-lived intestinal microbiota-specific T cells.

  • Immunology and Microbiology

mRNA lipid nanoparticle (LNP) vaccines would be useful during an influenza virus pandemic since they can be produced rapidly and do not require the generation of egg-adapted vaccine seed stocks. Highly pathogenic avian influenza viruses from H5 clade 2.3.4.4b are circulating at unprecedently high levels in wild and domestic birds and have the potential to adapt to humans. Here, we generate an mRNA lipid nanoparticle (LNP) vaccine encoding the hemagglutinin (HA) glycoprotein from a clade 2.3.4.4b H5 isolate. The H5 mRNA-LNP vaccine elicits strong T cell and antibody responses in female mice, including neutralizing antibodies and broadly-reactive anti-HA stalk antibodies. The H5 mRNA-LNP vaccine elicits antibodies at similar levels compared to whole inactivated vaccines in female mice with and without prior H1N1 exposures. Finally, we find that the H5 mRNA-LNP vaccine is immunogenic in male ferrets and prevents morbidity and mortality of animals following 2.3.4.4b H5N1 challenge. Together, our data demonstrate that a monovalent mRNA-LNP vaccine expressing 2.3.4.4b H5 is immunogenic and protective in pre-clinical animal models.
© 2024. The Author(s).

  • Genetics
  • Immunology and Microbiology

mRNA vaccines have proven to be pivotal in the fight against COVID-19. A recommended booster, given 3 to 4 weeks post the initial vaccination, can substantially amplify protective antibody levels. Here, we show that, compared to contralateral boost, ipsilateral boost of the SARS-CoV-2 mRNA vaccine induces more germinal center B cells (GCBCs) specific to the receptor binding domain (RBD) and generates more bone marrow plasma cells. Ipsilateral boost can more rapidly generate high-affinity RBD-specific antibodies with improved cross-reactivity to the Omicron variant. Mechanistically, the ipsilateral boost promotes the positive selection and plasma cell differentiation of pre-existing GCBCs from the prior vaccination, associated with the expansion of T follicular helper cells. Furthermore, we show that ipsilateral immunization with an unrelated antigen after a prior mRNA vaccination enhances the germinal center and antibody responses to the new antigen compared to contralateral immunization. These findings propose feasible approaches to optimize vaccine effectiveness.
Copyright © 2023 The Author(s). Published by Elsevier Inc. All rights reserved.

  • FC/FACS
  • COVID-19
  • Genetics
  • Immunology and Microbiology

A novel memory-like Tfh cell subset is precursor to effector Tfh cells in recall immune responses.

In The Journal of Experimental Medicine on 1 January 2024 by Feng, H., Zhao, Z., et al.

T follicular helper (Tfh) cells, essential for germinal center reactions, are not identical, with different phenotypes reported. Whether, when, and how they generate memory cells is still poorly understood. Here, through single-cell RNA-sequencing analysis of CXCR5+Bcl6+ Tfh cells generated under different conditions, we discovered, in addition to PD-1hi effector Tfh cells, a CD62L+PD1low subpopulation. CD62L-expressing Tfh cells developed independently from PD-1+ cells and not in direct contact with B cells. More importantly, CD62L+ Tfh cells expressed memory- and stemness-associated genes, and with better superior long-term survival, they readily generated PD-1hi cells in the recall response. Finally, KLF2 and IL7R, also highly expressed by CD62L+ Tfh cells, were required to regulate their development. Our work thus demonstrates a novel Tfh memory-like cell subpopulation, which may benefit our understanding of immune responses and diseases.
© 2023 Feng et al.

  • Immunology and Microbiology
View this product on CiteAb