Product Citations: 4

BMI1 regulates multiple myeloma-associated macrophage's pro-myeloma functions.

In Cell Death & Disease on 15 May 2021 by Zhang, D., Huang, J., et al.

Multiple myeloma (MM) is an aggressive malignancy characterized by terminally differentiated plasma cells accumulation in the bone marrow (BM). MM BM exhibits elevated MΦs (macrophages) numbers relative to healthy BM. Current evidence indicates that MM-MΦs (MM-associated macrophages) have pro-myeloma functions, and BM MM-MΦs numbers negatively correlate with patient survival. Here, we found that BMI1, a polycomb-group protein, modulates the pro-myeloma functions of MM-MΦs, which expressed higher BMI1 levels relative to normal MΦs. In the MM tumor microenvironment, hedgehog signaling in MΦs was activated by MM-derived sonic hedgehog, and BMI1 transcription subsequently activated by c-Myc. Relative to wild-type MM-MΦs, BMI1-KO (BMI1 knockout) MM-MΦs from BM cells of BMI1-KO mice exhibited reduced proliferation and suppressed expression of angiogenic factors. Additionally, BMI1-KO MM-MΦs lost their ability to protect MM cells from chemotherapy-induced cell death. In vivo analysis showed that relative to wild-type MM-MΦs, BMI1-KO MM-MΦs lost their pro-myeloma effects. Together, our data show that BMI1 mediates the pro-myeloma functions of MM-MΦs.

  • FC/FACS
  • Cell Biology
  • Immunology and Microbiology

Future progress in the treatment of multiple myeloma (MM) requires both the characterisation of key drivers of the disease and novel, innovative approaches to tackle these vulnerabilities. The present study focussed on the pre-clinical evaluation of a novel drug class, BMI-1 modulators, in MM. We demonstrate potent activity of PTC-028 and PTC596 in a comprehensive set of in vitro and in vivo models, including models of drug resistance and stromal support. Treatment of MM cells with PTC-028 and PTC596 downregulated BMI-1 protein levels, which was found to correlate with drug activity. Surprisingly, BMI-1 was dispensable for the activity of BMI-1 modulators and MM cell growth. Our data rather point to mitotic arrest accompanied by myeloid cell leukaemia-1 (MCL-1) loss as key anti-MM mechanisms and reveal impaired MYC and AKT signalling activity due to BMI-1 modulator treatment. Moreover, we observed a complete eradication of MM after PTC596 treatment in the 5TGM.1 in vivo model and define epigenetic compounds and B cell leukaemia/lymphoma 2 homology domain 3 (BH3) mimetics as promising combination partners. These results bring into question the postulated role of BMI-1 as an essential MM gene and confirm BMI-1 modulators as potent anti-mitotic agents with encouraging pre-clinical activity that supports their rapid translation into clinical trials.
© 2020 British Society for Haematology and John Wiley & Sons Ltd.

  • Cancer Research
  • Cardiovascular biology
  • Cell Biology

Targeting of BMI-1 with PTC-209 shows potent anti-myeloma activity and impairs the tumour microenvironment.

In Journal of Hematology & Oncology on 2 March 2016 by Bolomsky, A., Schlangen, K., et al.

The polycomb complex protein BMI-1 (BMI-1) is a putative oncogene reported to be overexpressed in multiple myeloma (MM). Silencing of BMI-1 was shown to impair the growth and survival of MM cells. However, therapeutic agents specifically targeting BMI-1 were not available so far. Here, we investigated PTC-209, a novel small molecule inhibitor of BMI-1, for its activity in MM.
BMI-1 expression was analysed in human MM cell lines and primary MM cells by using publically available gene expression profiling (GEP) data. The anti-MM activity of PTC-209 was investigated by viability testing, cell cycle analysis, annexin V and 7-AAD staining, quantification of cleaved poly(ADP-ribose) polymerase (PARP), JC-1 as well as colony formation assays. Deregulation of central myeloma growth and survival genes was studied by quantitative PCR and flow cytometry, respectively. In addition, the impact of PTC-209 on in vitro osteoclast, osteoblast and tube formation was analysed.
We confirmed overexpression of BMI-1 in MM patients by using publically available GEP datasets. Of note, BMI-1 expression was further increased at relapse which translated into significantly shorter overall survival in relapsed/refractory patients treated with bortezomib or dexamethasone. Treatment with PTC-209 significantly decreased viable cell numbers in human MM cell lines, induced a G1 cell cycle arrest, promoted apoptosis and demonstrated synergistic activity with pomalidomide and carfilzomib. The anti-MM activity of PTC-209 was accompanied by a significant decrease of cyclin D1 (CCND1) and v-myc avian myelocytomatosis viral oncogene homolog (MYC) expression as well as upregulation of cyclin-dependent kinase inhibitor 1A (CDKN1A) and cyclin-dependent kinase inhibitor 1B (CDKN1B). We also observed upregulation of NOXA (up to 3.6 ± 1.2-fold induction, P = 0.009) and subsequent downregulation of myeloid cell leukemia 1 (MCL-1) protein levels, which likely mediates the apoptotic effects of PTC-209. Importantly, the anti-MM activity was upheld in the presence of stromal support or myeloma growth factors insulin-like growth factor 1 (IGF-1) and interleukin 6 (IL-6). In the MM microenvironment, PTC-209 impaired tube formation, impaired osteoclast development and decreased osteoblast formation in a dose-dependent manner (P < 0.01 at 1 μM, respectively). The latter might be attributed to an induction of DKK1 and was reversed by concurrent anti-DKK1 antibody treatment.
We confirmed overexpression of BMI-1 in MM highlighting its role as an attractive drug target and reveal therapeutic targeting of BMI-1 by PTC-209 as a promising novel therapeutic intervention for MM.

  • FC/FACS
  • Homo sapiens (Human)
  • Cancer Research

The purpose of this study was to characterize the expression of CD200, a membrane protein that functions in immune evasion, to examine its correlations with cancer stem cell (CSC)-like features and analyze its response to chemotherapy and radiation in human papillomavirus (HPV)-positive (+) and negative (-) head and neck squamous cell carcinomas (HNSCCs).
CD200 expression was analyzed in several HNSCC cell lines. CD200 was overexpressed in HPV(+) murine tonsil epithelial cells, its effects on Shh and Bmi-1 were examined in vitro, and tumor growth and response to chemoradiation were analyzed in vitro and in vivo.
CD200 was diversely expressed and consistently associated with expression of Bmi-1 and Shh. Overexpression of CD200 induced Bmi-1 and Shh. Tumors grew similarly between C57BL/6 and Rag1(-/-) C57BL/6 mice. CD200 expression enhanced the resistance to chemoradiation only in vivo.
CD200 was related to CSC features and modulates response to chemoradiation in vivo. Attenuating this might be a potential therapeutic strategy.
© 2014 Wiley Periodicals, Inc.

  • FC/FACS
  • Cancer Research
  • Stem Cells and Developmental Biology
View this product on CiteAb