Product Citations: 15

Immune memory is influenced by the frequency and type of antigenic challenges. Here, we performed a cross-sectional comparison of immune parameters following a BA.1 breakthrough infection in individuals with prior hybrid immunity (conferred by infection and vaccination) versus those solely vaccinated in a cohort of health care workers in Lyon, France. The results showed higher levels of serum anti-receptor binding domain (RBD) antibodies and neutralizing antibodies against BA.1 post-infection in the vaccine-only group. Individuals in this group also showed a decrease in memory B cells against the ancestral strain but an increase in those specific and cross-reactive to BA.1, suggesting a more limited immune imprinting. Conversely, hybrid immunity prevents the decrease in antibody dependent cellular cytotoxicity (ADCC) response, possibly by limiting IgG4 class-switching and enhanced anti-N responses post-infection. This highlights that BA.1 breakthrough infection induces different immune responses depending on prior history of vaccination and infection, which should be considered for further vaccination guidelines.
© 2025 The Authors.

  • FC/FACS
  • Immunology and Microbiology

The development of antibody drugs through animal immunization typically requires the humanization of host antibodies to address concerns about immunogenicity in humans. However, employing an animal model capable of producing human antibodies presents the opportunity to develop antibody drugs without the need for humanization. Despite the ratio of human immunoglobulin (Ig) κ to Igλ usage being approximately 60%:40%, the majority of approved antibody therapeutics are kappa antibodies, and the development of lambda antibodies as therapeutic agents has lagged behind. Therefore, in this study, we developed mice carrying the IGH and IGL loci (IGHL), which can produce human lambda antibodies, using mouse artificial chromosome (MAC) vectors. We demonstrated that IGHL mice consistently retain the human lambda antibody locus integrated on the MAC across generations and can be induced to produce specific antibodies upon antigen stimulation. These findings provide a promising platform for advancing lambda antibody drugs, which have historically been neglected.
© 2024 The Author(s).

  • Immunology and Microbiology

Primary antiphospholipid syndrome (PAPS) is a life-threatening clotting disorder mediated by pathogenic autoantibodies. Here we dissect the origin of self-reactive B cells in human PAPS using peripheral blood and bone marrow of patients with triple-positive PAPS via combined single-cell RNA sequencing, B cell receptors (BCR) repertoire profiling, CITEseq analysis and single cell immortalization. We find that antiphospholipid (aPL)-specific B cells are present in the naive compartment, polyreactive, and derived from the natural repertoire. Furthermore, B cells with aPL specificities are not eliminated in patients with PAPS, persist until the memory and long-lived plasma cell stages, likely after defective germinal center selection, while becoming less polyreactive. Lastly, compared with the non-PAPS cells, PAPS B cells exhibit distinct IFN and APRIL signature as well as dysregulated mTORC1 and MYC pathways. Our findings may thus elucidate the survival mechanisms of these autoreactive B cells and suggest potential therapeutic targets for the treatment of PAPS.
© 2024. The Author(s).

  • FC/FACS
  • Homo sapiens (Human)
  • Immunology and Microbiology

It is unknown how intestinal B cell populations and B cell receptor (BCR) repertoires are established and maintained over time in humans. Following intestinal transplantation (ITx), surveillance ileal mucosal biopsies provide a unique opportunity to map the dynamic establishment of recipient gut lymphocyte populations in immunosuppressed conditions.
Using polychromatic flow cytometry that includes HLA allele group-specific antibodies distinguishing donor from recipient cells along with high throughput BCR sequencing, we tracked the establishment of recipient B cell populations and BCR repertoire in the allograft mucosa of ITx recipients.
We confirm the early presence of naïve donor B cells in the circulation (donor age range: 1-14 years, median: 3 years) and, for the first time, document the establishment of recipient B cell populations, including B resident memory cells, in the intestinal allograft mucosa (recipient age range at the time of transplant: 1-44 years, median: 3 years). Recipient B cell repopulation of the allograft was most rapid in infant (<1 year old)-derived allografts and, unlike T cell repopulation, did not correlate with rejection rates. While recipient memory B cell populations were increased in graft mucosa compared to circulation, naïve recipient B cells remained detectable in the graft mucosa for years. Comparisons of peripheral and intra-mucosal B cell repertoires in the absence of rejection (recipient age range at the time of transplant: 1-9 years, median: 2 years) revealed increased BCR mutation rates and clonal expansion in graft mucosa compared to circulating B cells, but these parameters did not increase markedly after the first year post-transplant. Furthermore, clonal mixing between the allograft mucosa and the circulation was significantly greater in ITx recipients, even years after transplantation, than in deceased adult donors. In available pan-scope biopsies from pediatric recipients, we observed higher percentages of naïve recipient B cells in colon allograft compared to small bowel allograft and increased BCR overlap between native colon vs colon allograft compared to that between native colon vs ileum allograft in most cases, suggesting differential clonal distribution in large intestine vs small intestine.
Collectively, our data demonstrate intestinal mucosal B cell repertoire establishment from a circulating pool, a process that continues for years without evidence of stabilization of the mucosal B cell repertoire in pediatric ITx patients.
Copyright © 2024 Fu, Hsiao, Waffarn, Meng, Long, Frangaj, Jones, Gorur, Shtewe, Li, Muntnich, Rogers, Jiao, Velasco, Matsumoto, Kubota, Wells, Danzl, Ravella, Iuga, Vasilescu, Griesemer, Weiner, Farber, Luning Prak, Martinez, Kato, Hershberg and Sykes.

  • Immunology and Microbiology

Anti-capsule human monoclonal antibodies protect against hypervirulent and pandrug-resistantKlebsiella pneumoniae

Preprint on BioRxiv : the Preprint Server for Biology on 14 February 2024 by Roscioli, E., Galli Fonseca, V. Z., et al.

SUMMARY The silent pandemic caused by antimicrobial resistance (AMR) requires innovative therapeutic approaches. Human monoclonal antibodies (mAbs), which are among the most transformative, safe and effective drugs in oncology and autoimmunity, are rarely used for infectious diseases and not yet used for AMR. Here we applied an antigen-agnostic strategy to isolate extremely potent human mAbs against Klebsiella pneumoniae (Kp) sequence type 147 (ST147), a hypervirulent and pandrug-resistant clonotype which is spreading globally. Isolated mAbs target the bacterial capsule and the O-antigen. Surprisingly, although both capsule- and O-antigen-specific mAbs displayed bactericidal activity in the picomolar range in vitro , only the capsule-specific mAbs were protective against fulminant ST147 bloodstream infection. Protection correlated with in vitro bacterial uptake by macrophages and enchained bacterial growth. Our study describes the only drug able to protect against pandrug-resistant Kp and provides a strategy to isolate mAbs and identify correlates of protection against AMR bacteria.

View this product on CiteAb