Product Citations: 6

RhCMV Expands CCR5 Memory T Cells and promotes SIV reservoir genesis in the Gut Mucosa

Preprint on BioRxiv : the Preprint Server for Biology on 8 January 2025 by Perdios, C., Babu, N. S., et al.

Cytomegalovirus (CMV) is a prevalent β-herpesvirus that persists asymptomatically in immunocompetent hosts. In people with HIV-1 (PWH), CMV is associated with persistence of the HIV-1 reservoir and particular inflammatory related co-morbidities. The true causative role of CMV in HIV-associated pathologies remains unclear given that nearly all PWH are coinfected with CMV. In this study, we examined acute phase SIV dynamics in cohorts of rhesus macaques that were seropositive or -negative for rhesus CMV (RhCMV). We observed expansion of CCR5+ target CD4+ T cells in gut and lymph nodes (LN) that existed naturally in RhCMV-seropositive animals, the majority of which did not react to RhCMV lysate. These cells expressed high levels of the chemokine receptor CXCR3 and a ligand for this receptor, CXCL9, was systemically elevated in RhCMV-seropositive animals. RhCMV+ RMs also exhibited higher peak SIV viremia. CCR5 target memory CD4 T cells in the gut of RhCMV+ RMs were maintained during acute SIV and this was associated with greater seeding of SIV DNA in the intestine. Overall, our data suggests the ability of RhCMV to regulate chemotactic axes that direct lymphocyte trafficking and promote seeding of SIV in a diverse, polyclonal pool of memory CD4+ T cells.

  • Macaca mulatta (Rhesus Monkey)
  • Immunology and Microbiology

In vitro studies have shown that deletion of nef and deleterious mutation in the Nef dimerization interface attenuates HIV replication and associated pathogenesis. Humanized rodents with human immune cells and lymphoid tissues are robust in vivo models for investigating the interactions between HIV and the human immune system. Here, we demonstrate that nef deletion impairs HIV replication and HIV-induced immune dysregulation in the blood and human secondary lymphoid tissue (human spleen) in bone marrow-liver-thymus-spleen (BLTS) humanized mice. Furthermore, we also show that nef defects (via deleterious mutations in the dimerization interface) impair HIV replication and HIV-induced immune dysregulation in the blood and human spleen in BLTS-humanized mice. We demonstrate that the reduced replication of nef-deleted and nef-defective HIV is associated with robust antiviral innate immune response, and T helper 1 response. Our results support the proposition that Nef may be a therapeutic target for adjuvants in HIV cure strategies.
Copyright © 2024 Elsevier Inc. All rights reserved.

  • Immunology and Microbiology

Tumor-associated macrophages trigger MAIT cell dysfunction at the HCC invasive margin.

In Cell on 17 August 2023 by Ruf, B., Bruhns, M., et al.

Mucosal-associated invariant T (MAIT) cells represent an abundant innate-like T cell subtype in the human liver. MAIT cells are assigned crucial roles in regulating immunity and inflammation, yet their role in liver cancer remains elusive. Here, we present a MAIT cell-centered profiling of hepatocellular carcinoma (HCC) using scRNA-seq, flow cytometry, and co-detection by indexing (CODEX) imaging of paired patient samples. These analyses highlight the heterogeneity and dysfunctionality of MAIT cells in HCC and their defective capacity to infiltrate liver tumors. Machine-learning tools were used to dissect the spatial cellular interaction network within the MAIT cell neighborhood. Co-localization in the adjacent liver and interaction between niche-occupying CSF1R+PD-L1+ tumor-associated macrophages (TAMs) and MAIT cells was identified as a key regulatory element of MAIT cell dysfunction. Perturbation of this cell-cell interaction in ex vivo co-culture studies using patient samples and murine models reinvigorated MAIT cell cytotoxicity. These studies suggest that aPD-1/aPD-L1 therapies target MAIT cells in HCC patients.
Published by Elsevier Inc.

  • Cancer Research

h4>Background: /h4> Loss of function mutations in the human immunodeficiency virus (HIV) negative factor ( nef ) gene are associated with reduced viremia, robust T cell immune responses, and delayed acquired immunodeficiency syndrome (AIDS) progression in humans. Importantly, Nef persists in antiretroviral therapy-treated chronic HIV-infected individuals. In vitro studies have shown that mutations in the Nef dimerization interface significantly attenuate viral replication and impair host defense. However, in vivo, mechanistic studies on the role of Nef dimerization in HIV infection are lacking. Humanized rodents with human immune cells are robust platforms for investigating the interactions between HIV and the human immune system. The bone marrow-liver-thymus-spleen (BLTS) humanized mouse model carries human immune cells and lymphoid tissues that facilitate anti-viral immune responses. h4>Results: /h4> Here, we demonstrate that nef deletion abrogates HIV viremia and HIV-induced immune dysregulation in the BLTS-humanized mouse model. Furthermore, we demonstrate that preventing Nef dimerization abrogates HIV viremia and HIV-induced immune dysregulation in the BLTS-humanized mouse model. We also demonstrate that viremic control of HIV carrying deletion or dimerization defects in nef is associated with robust antiviral innate immune signaling, T helper 1 (Th1) signaling, and reduced expression of Programmed cell death protein 1 (PD1) on T cells. h4>Conclusions: /h4> Our results suggest that Nef dimerization may be a therapeutic target for adjuvants in immune-mediated HIV cure strategies. Furthermore, Nef dimerization may be a therapeutic target for ameliorating the residual immune dysregulation in antiretroviral therapy-treated chronic HIV-infected individuals.

  • Immunology and Microbiology

Nef dimerization defect abrogates HIV viremia and associated immune dysregulation in the Bone Marrow-Liver-Thymus-Spleen (BLTS) humanized mouse model

Preprint on BioRxiv : the Preprint Server for Biology on 21 January 2021 by Biradar, S., Agarwal, Y., et al.

Loss of function mutations in the human immunodeficiency virus (HIV) negative factor (Nef) gene are associated with reduced viremia, robust T cell immune responses, and delayed acquired immunodeficiency syndrome (AIDS) progression in humans. In vitro studies have shown that mutations in the Nef dimerization interface significantly attenuate viral replication and impair host defense. However, in vivo , mechanistic studies on the role of Nef dimerization in HIV infection are lacking. Humanized rodents with human immune cells are robust platforms for investigating the interactions between HIV and the human immune system. The bone marrow-liver-thymus-spleen (BLTS) humanized mouse model carries human immune cells and lymphoid tissues that facilitate anti-viral immune responses. Here, we employed the BLTS-humanized mouse model to demonstrate that preventing Nef dimerization abrogates HIV viremia and the associated immune dysregulation. This suggests that Nef dimerization may be a therapeutic target for future HIV cure strategies.

  • Immunology and Microbiology
View this product on CiteAb