Product Citations: 2

Isolation and expansion of pure and functional γδ T cells.

In Frontiers in Immunology on 1 March 2024 by Verkerk, T., Pappot, A. T., et al.

γδ T cells are important components of the immune system due to their ability to elicit a fast and strong response against infected and transformed cells. Because they can specifically and effectively kill target cells in an MHC independent fashion, there is great interest to utilize these cells in anti-tumor therapies where antigen presentation may be hampered. Since only a small fraction of T cells in the blood or tumor tissue are γδ T cells, they require extensive expansion to allow for fundamental, preclinical and ex vivo research. Although expansion protocols can be successful, most are based on depletion of other cell types rather than γδ T cell specific isolation, resulting in unpredictable purity of the isolated fraction. Moreover, the primary focus only lies with expansion of Vδ2+ T cells, while Vδ1+ T cells likewise have anti-tumor potential. Here, we investigated whether γδ T cells directly isolated from blood could be efficiently expanded while maintaining function. γδ T cell subsets were isolated using MACS separation, followed by FACS sorting, yielding >99% pure γδ T cells. Isolated Vδ1+ and Vδ2+ T cells could effectively expand immediately after isolation or upon freeze/thawing and reached expansion ratios between 200 to 2000-fold starting from varying numbers using cytokine supported feeder stimulations. MACS/FACS isolated and PHA stimulated γδ T cells expanded as good as immobilized antibody mediated stimulated cells in PBMCs, but delivered purer cells. After expansion, potential effector functions of γδ T cells were demonstrated by IFN-γ, TNF-α and granzyme B production upon PMA/ionomycin stimulation and effective killing capacity of multiple tumor cell lines was confirmed in killing assays. In conclusion, pure γδ T cells can productively be expanded while maintaining their anti-tumor effector functions against tumor cells. Moreover, γδ T cells could be expanded from low starting numbers suggesting that this protocol may even allow for expansion of cells extracted from tumor biopsies.
Copyright © 2024 Verkerk, Pappot, Jorritsma, King, Duurland, Spaapen and van Ham.

  • Immunology and Microbiology

Allosteric inhibition of SHP2 rescues functional T-cell abnormalities in SAP deficiency.

In The Journal of Allergy and Clinical Immunology on 1 December 2022 by Panchal, N., Houghton, B. C., et al.

X-linked lymphoproliferative disease (XLP) is a primary immunodeficiency arising from SH2D1A mutations leading to loss of SLAM-associated protein (SAP). SAP is an intracellular adaptor protein that binds to SLAM family receptors and is expressed in specific lymphoid lineages. In T cells, SAP relays activatory signals from the T-cell receptor but in its absence SH2 containing protein tyrosine phosphase-1 (SHP1), SH2 containing protein tyrosine phosphase-2 (SHP2), and SH2 containing inositol 5'-phosphatase proteins (SHIP) induce T-cell inhibitory signals leading to abnormal T-cell responses. This results in severe clinical manifestations including immune dysregulation, dysgammaglobulinemia, lymphoma, and hemophagocytic lymphohistiocytosis. Current treatment relies on supportive therapies including immunoglobulin replacement and symptom-directed therapy, with hematopoietic stem cell transplant offering the only curative option.
As most XLP symptoms are due to defective T-cell function, this study investigated whether inhibition of SHP2 can restore cellular function in the absence of SAP.
Healthy donor and XLP patient T cells were activated with anti-CD3/CD28 in T-cell media supplemented with a SHP2 inhibitor (RMC-4550 in vitro for 24 hours) and functional assays were performed to assess follicular TH (TFH) cell function, CD8 cytotoxicity, and sensitivity to restimulation-induced cell death. Additionally, SAP-deficient (SAPy/-) mice were treated with RMC-4550 before T-cell mediated challenge with 4-hydroxy-3-nitrophenylacetly conjugated chicken gammaglobulin and subsequent assessment of humoral immunity analyzing TFH cell population, germinal center formation, and antigen-dependent immunoglobulin secretion.
This study shows that the use of RMC-4550 restores T-cell function in XLP patient cells and a SAPy/- model, demonstrating restoration of TFH cell function through immunoglobulin and cytokine secretion analysis alongside rescue of cytotoxicity and restimulation-induced cell death.
These data suggest that SHP2 inhibitors could offer a novel and effective targeted treatment approach for patients with XLP.
Copyright © 2022. Published by Elsevier Inc.

  • Immunology and Microbiology
View this product on CiteAb