Product Citations: 18

A refined low-dose murine model ofMycobacterium ulceransinfection to assess integrated immune networks in Buruli ulcer pathogenesis

Preprint on BioRxiv : the Preprint Server for Biology on 24 April 2025 by Muhi, S., Foo, I. J., et al.

Mycobacterium ulcerans , the causative agent of Buruli ulcer, is a slow-growing zoonotic pathogen with distinctive pathogenesis linked primarily to its toxin mycolactone. Recent research has shown that the M. ulcerans infectious dose is very low (<10 colony forming units [CFU]). Buruli ulcer animal infection models traditionally use bacterial challenge doses in the range 10 4 – 10 6 CFU; a range orders of magnitude higher than natural infection. These large doses represent an unrealistic challenge for vaccine trials and studies of immunity. Here, we address this issue and describe a murine tail infection model in two genetically distinct mouse strains (BALB/c and C57BL/6) using quality-controlled, M. ulcerans challenge doses (10 – 20 CFU and 100 CFU). Over 24-weeks, we assessed host responses to infection by measuring >70 clinical, immunological and microbiological parameters. Principal findings included a 100% infection rate even at the lowest bacterial challenge, but with a dose-dependent delay in lesion onset and disease progression for both mouse strains. Bacterial growth kinetics were similar between mouse strains. There was a difference in immune profiles between mouse strains and between ‘low’ (10 CFU) versus ‘high’ (100 CFU) bacterial challenge doses. C57BL/6 mice exhibited more robust systemic cellular responses and more rapid lesion onset compared to BALB/c mice. There were dose-dependent cytokine and chemokine differences in C57BL/6 mice, while BALB/c mice displayed similar responses across both doses. Antibody responses were only detected late in the infection and were associated with the high-dose inoculum in both strains. Machine learning and other statistical analyses highlighted the importance of activated CD8 + T cells and dendritic cells in the immune response to low-dose infection in C57BL/6 mice. Murine low-dose M. ulcerans infection models provide confidence for future human Buruli ulcer challenge trials and will inform the development of effective vaccines and therapeutics.

  • Immunology and Microbiology

Tumor-associated neutrophil precursors impair homologous DNA repair and promote sensitivity to PARP-inhibition

Preprint on Research Square on 4 June 2024 by Mukherjee, S., Elia, A., et al.

Abstract Tumor evolution is one of the major mechanisms responsible for acquiring therapy-resistant and more aggressive cancer clones. Whether the tumor microenvironment through immune-mediated mechanisms might promote the development of more aggressive cancer types is crucial for the identification of additional therapeutical opportunities. Here, we identified a novel subset of tumor-associated neutrophils, defined as tumor-associated neutrophil precursors (PreNeu). These PreNeu are enriched in highly proliferative hormone-dependent breast cancers and impair DNA repair capacity.  Mechanistically, succinate secreted by tumor-associated PreNeu inhibits homologous recombination, promoting error-prone DNA repair through non-homologous end-joining regulated by PARP-1. Consequently, breast cancer cells acquire genomic instability, promoting tumor editing and progression. Selective inhibition of these pathways induces increased tumor cell killing in vitro and in vivo. Tumor-associated PreNeu score correlates with copy number alterations in highly proliferative hormone-dependent tumors from breast cancer patients. Treatment with PARP-1 inhibitors counteract the pro-tumorigenic effect of these neutrophils and synergize with combined immunotherapeutic approaches.

  • FC/FACS
  • Mus musculus (House mouse)
  • Cancer Research
  • Genetics

Combining toll-like receptor agonists with immune checkpoint blockade affects antitumor vaccine efficacy.

In Journal for Immunotherapy of Cancer on 3 May 2024 by Jeon, D., Hill, E., et al.

T cell checkpoint receptors are expressed when T cells are activated, and modulation of the expression or signaling of these receptors can alter the function of T cells and their antitumor efficacy. We previously found that T cells activated with cognate antigen had increases in the expression of PD-1, and this was attenuated in the presence of multiple toll-like receptor (TLR) agonists, notably TLR3 plus TLR9. In the current report, we sought to investigate whether combining TLR agonists with immune checkpoint blockade can further augment vaccine-mediated T cell antitumor immunity in murine tumor models.
TLR agonists (TLR3 plus TLR9) and immune checkpoint inhibitors (antibodies targeting PD-1, CTLA-4, LAG-3, TIM-3 or VISTA) were combined and delivered with vaccines or vaccine-activated CD8+T cells to E.G7-OVA or MyC-CaP tumor-bearing mice. Tumors were assessed for growth and then collected and analyzed by flow cytometry.
Immunization of E.G7-OVA tumor-bearing mice with SIINFEKL peptide vaccine, coadministered with TLR agonists and αCTLA-4, demonstrated greater antitumor efficacy than immunization with TLR agonists or αCTLA-4 alone. Conversely, the antitumor efficacy was abrogated when vaccine and TLR agonists were combined with αPD-1. TLR agonists suppressed PD-1 expression on regulatory T cells (Tregs) and activated this population. Depletion of Tregs in tumor-bearing mice led to greater antitumor efficacy of this combination therapy, even in the presence of αPD-1. Combining vaccination with TLR agonists and αCTLA-4 or αLAG-3 showed greater antitumor than with combinations with αTIM-3 or αVISTA.
The combination of TLR agonists and αCTLA-4 or αLAG-3 can further improve the efficacy of a cancer vaccine, an effect not observed using αPD-1 due to activation of Tregs when αPD-1 was combined with TLR3 and TLR9 agonists. These data suggest that optimal combinations of TLR agonists and immune checkpoint blockade may improve the efficacy of human anticancer vaccines.
© Author(s) (or their employer(s)) 2024. Re-use permitted under CC BY-NC. No commercial re-use. See rights and permissions. Published by BMJ.

  • Mus musculus (House mouse)
  • Immunology and Microbiology

Construction of a CCL20-centered circadian-signature based prognostic model in cervical cancer.

In Cancer Cell International on 15 May 2023 by Yu, Y., Liu, Y., et al.

Rather low vaccination rates for Human papillomavirus (HPV) and pre-existing cervical cancer patients with limited therapeutic strategies ask for more precise prognostic model development. On the other side, the clinical significance of circadian clock signatures in cervical cancer lacks investigation.
Subtypes classification based upon eight circadian clock core genes were implemented in TCGA-CESC through k-means clustering methods. Afterwards, KEGG, GO and GSEA analysis were conducted upon differentially expressed genes (DEGs) between high and low-risk groups, and tumor microenvironment (TME) investigation by CIBERSORT and ESTIMATE. Furthermore, a prognostic model was developed by cox and lasso regression methods, and verified in GSE44001 by time-dependent receiver-operating characteristic curve (ROC) analysis. Lastly, FISH and IHC were used for validation of CCL20 expression in patients' specimens and U14 subcutaneous tumor models were built for TME composition.
We successfully classified cervical patients into high-risk and low-risk groups based upon circadian-oscillation-signatures. Afterwards, we built a prognostic risk model composed of GJB2, CCL20 and KRT24 with excellent predictive value on patients' overall survival (OS). We then proposed metabolism unbalance, especially for glycolysis, and immune related pathways to be major enriched signatures between the high-risk and low-risk groups. Then, we proposed an 'immune-desert'-like suppressive myeloid cells infiltration pattern in high-risk group TME and verified its resistance to immunotherapies. Finally, CCL20 was proved positively correlated with real-world patients' stages and induced significant less CD8+ T cells and more M2 macrophages infiltration in mouse model.
We unraveled a prognostic risk model based upon circadian oscillation and verified its solidity. Specifically, we unveiled distinct TME immune signatures in high-risk groups.
© 2023. The Author(s).

  • FC/FACS
  • Mus musculus (House mouse)
  • Cancer Research

Selective B cell depletion upon intravenous infusion of replication-incompetent anti-CD19 CAR lentivirus.

In Molecular Therapy. Methods Clinical Development on 8 September 2022 by Rive, C. M., Yung, E., et al.

Anti-CD19 chimeric antigen receptor (CAR)-T therapy for B cell malignancies has shown clinical success, but a major limitation is the logistical complexity and high cost of manufacturing autologous cell products. If engineered for improved safety, direct infusion of viral gene transfer vectors to initiate in vivo CAR-T transduction, expansion, and anti-tumor activity could provide an alternative, universal approach. To explore this approach we administered approximately 20 million replication-incompetent vesicular stomatitis virus G protein (VSV-G) lentiviral particles carrying an anti-CD19CAR-2A-GFP transgene comprising either an FMC63 (human) or 1D3 (murine) anti-CD19 binding domain, or a GFP-only control transgene, to wild-type C57BL/6 mice by tail vein infusion. The dynamics of immune cell subsets isolated from peripheral blood were monitored at weekly intervals. We saw emergence of a persistent CAR-transduced CD3+ T cell population beginning week 3-4 that reaching a maximum of 13.5% ± 0.58% (mean ± SD) and 7.8% ± 0.76% of the peripheral blood CD3+ T cell population in mice infused with ID3-CAR or FMC63-CAR lentivector, respectively, followed by a rapid decline in each case of the B cell content of peripheral blood. Complete B cell aplasia was apparent by week 5 and was sustained until the end of the protocol (week 8). No significant CAR-positive populations were observed within other immune cell subsets or other tissues. These results indicate that direct intravenous infusion of conventional VSV-G-pseudotyped lentiviral particles carrying a CD19 CAR transgene can transduce T cells that then fully ablate endogenous B cells in wild-type mice.
© 2022 The Authors.

  • FC/FACS
  • Mus musculus (House mouse)
  • Immunology and Microbiology
View this product on CiteAb