Product Citations: 19

Protocol to construct humanized mice with adult CD34+ hematopoietic stem and progenitor cells.

In STAR Protocols on 20 September 2024 by Yu, C. I., Maser, R., et al.

Humanized mice, defined as mice with human immune systems, have become an emerging model to study human hematopoiesis, infectious disease, and cancer. Here, we describe the techniques to generate humanized NSGF6 mice using adult human CD34+ hematopoietic stem and progenitor cells (HSPCs). We describe steps for constructing and monitoring the engraftment of humanized mice. We then detail procedures for tissue processing and immunophenotyping by flow cytometry to evaluate the multilineage hematopoietic differentiation. For complete details on the use and execution of this protocol, please refer to Yu et al.1.
Copyright © 2024 The Author(s). Published by Elsevier Inc. All rights reserved.

FAST-STEM: A human pluripotent stem cell engineering toolkit for rapid design-build-test-learn development of human cell-based therapeutic devices

Preprint on BioRxiv : the Preprint Server for Biology on 24 May 2024 by Rosenstein, A., Sambathkumar, R., et al.

Very recent clinical advances in stem cell derived tissue replacement and gene therapy, in addition to the rise of artificial intelligence aided scientific discovery, have placed the possibility of sophisticated human cell based therapies firmly within reach. However, development of such cells and testing of their engineered gene circuit components, has proven highly challenging, due to the need for generating stable cell lines for each design, build, test, learn engineering cycle. Current approaches to generating stable human induced pluripotent stem cell (hiPSC) lines are highly time consuming and suffer from lack of control, poor integration efficiency, and limited functionality. Validation in clinically relevant stem cell derived tissues is also broadly lacking. Such drawbacks are prohibitive to repeatably conducting cutting edge stem cell engineering with broad application within a realistic timeframe, and will not scale with the future of regenerative medicine. We have developed FASTSTEM (Facile Accelerated Stem cell Transgene integration with SynBio Tunable Engineering Modes), a hiPSC engineering platform that drastically reduces the time to generate differentiation ready stem cell lines from several weeks to 5 days, exhibiting a ~612-fold improvement in transgene integration rate over previous methodologies. Additional FAST-STEM innovations include: (i) rapid and highly efficient transgene integration; (ii) copy number control; (iii) simultaneous or consecutive integration of multiple gene cassettes; (iv) library screen capability. In addition to this unique functional versatility, platform transportability and broad use case for stem cell engineering was confirmed by differentiation into eight different cell types across nine different laboratories. This platform dramatically lowers the bar for integration of synthetic biology with regenerative medicine, enabling experiments which were previously deemed logistically impossible, thus paving the way for sophisticated human cell device development.

  • Stem Cells and Developmental Biology

Cell surface glycosylation can influence protein-protein interactions with particular relevance to changes in core fucosylation and terminal sialylation. Glycans are ligands for immune regulatory lectin families like galectins (Gals) or sialic acid immunoglobulin-like lectins (Siglecs). This study delves into the glycan alterations within immune subsets of systemic lupus erythematosus (SLE).
Evaluation of binding affinities of Galectin-1, Galectin-3, Siglec-1, Aleuria aurantia lectin (AAL, recognizing core fucosylation), and Sambucus nigra agglutinin (SNA, specific for α-2,6-sialylation) was conducted on various immune subsets in peripheral blood mononuclear cells (PBMCs) from control and SLE subjects. Lectin binding was measured by multi-parameter flow cytometry in 18 manually gated subsets of T-cells, NK-cells, NKT-cells, B-cells, and monocytes in unstimulated resting state and also after 3-day activation. Stimulated pre-gated populations were subsequently clustered by FlowSOM algorithm based on lectin binding and activation markers, CD25 or HLA-DR.
Elevated AAL, SNA and CD25+/CD25- SNA binding ratio in certain stimulated SLE T-cell subsets correlated with SLE Disease Activity Index 2000 (SLEDAI-2K) scores. The significantly increased frequencies of activated AALlow Siglec-1low NK metaclusters in SLE also correlated with SLEDAI-2K indices. In SLE, activated double negative NKTs displayed significantly lower core fucosylation and CD25+/CD25- Siglec-1 binding ratio, negatively correlating with disease activity. The significantly enhanced AAL binding in resting SLE plasmablasts positively correlated with SLEDAI-2K scores.
Alterations in the glycosylation of immune cells in SLE correlate with disease severity, which might represent potential implications in the pathogenesis of SLE.
Copyright © 2024 Szabó, Faragó, Bodor, Gémes, Puskás, Kovács and Szebeni.

  • Homo sapiens (Human)
  • Immunology and Microbiology

Pre-clinical use of humanized mice transplanted with CD34+ hematopoietic stem and progenitor cells (HSPCs) is limited by insufficient engraftment with adult non-mobilized HSPCs. Here, we developed a novel immunodeficient mice based on NOD-SCID-Il2γc-/- (NSG) mice to support long-term engraftment with human adult HSPCs. As both Flt3L and IL-6 are critical for many aspects of hematopoiesis, we knock-out mouse Flt3 and knock-in human IL6 gene. The resulting mice showed an increase in the availability of mouse Flt3L to human cells and a dose-dependent production of human IL-6 upon activation. Upon transplantation with low number of human HSPCs from adult bone marrow, these humanized mice demonstrated a significantly higher engraftment with multilineage differentiation of human lymphoid and myeloid cells, and tissue colonization at one year after adult HSPC transplant. Thus, these mice enable studies of human hematopoiesis and tissue colonization over time and may facilitate building autologous models for immuno-oncology studies.
© 2024 The Author(s).

IL-15 reprogramming compensates for NK cell mitochondrial dysfunction in HIV-1 infection.

In JCI Insight on 16 January 2024 by Moreno-Cubero, E., Alrubayyi, A., et al.

Dynamic regulation of cellular metabolism is important for maintaining homeostasis and can directly influence immune cell function and differentiation, including NK cell responses. Persistent HIV-1 infection leads to a state of chronic immune activation, NK cell subset redistribution, and progressive NK cell dysregulation. In this study, we examined the metabolic processes that characterize NK cell subsets in HIV-1 infection, including adaptive NK cell subpopulations expressing the activating receptor NKG2C, which expand during chronic infection. These adaptive NK cells exhibit an enhanced metabolic profile in HIV-1- individuals infected with human cytomegalovirus (HCMV). However, the bioenergetic advantage of adaptive CD57+NKG2C+ NK cells is diminished during chronic HIV-1 infection, where NK cells uniformly display reduced oxidative phosphorylation (OXPHOS). Defective OXPHOS was accompanied by increased mitochondrial depolarization, structural alterations, and increased DRP-1 levels promoting fission, suggesting that mitochondrial defects are restricting the metabolic plasticity of NK cell subsets in HIV-1 infection. The metabolic requirement for the NK cell response to receptor stimulation was alleviated upon IL-15 pretreatment, which enhanced mammalian target of rapamycin complex 1 (mTORC1) activity. IL-15 priming enhanced NK cell functionality to anti-CD16 stimulation in HIV-1 infection, representing an effective strategy for pharmacologically boosting NK cell responses.

  • Cell Biology
  • Immunology and Microbiology
View this product on CiteAb