Product Citations: 17

FMS-related tyrosine kinase 3 ligand (FLT3L), encoded by FLT3LG, is a hematopoietic factor essential for the development of natural killer (NK) cells, B cells, and dendritic cells (DCs) in mice. We describe three humans homozygous for a loss-of-function FLT3LG variant with a history of various recurrent infections, including severe cutaneous warts. The patients' bone marrow (BM) was hypoplastic, with low levels of hematopoietic progenitors, particularly myeloid and B cell precursors. Counts of B cells, monocytes, and DCs were low in the patients' blood, whereas the other blood subsets, including NK cells, were affected only moderately, if at all. The patients had normal counts of Langerhans cells (LCs) and dermal macrophages in the skin but lacked dermal DCs. Thus, FLT3L is required for B cell and DC development in mice and humans. However, unlike its murine counterpart, human FLT3L is required for the development of monocytes but not NK cells.
Copyright © 2024 The Authors. Published by Elsevier Inc. All rights reserved.

  • FC/FACS
  • Homo sapiens (Human)

Currently, the precise causes of over 40 % of recurrent spontaneous abortion (RSA) cases cannot be identified, leading to the term "unexplained RSA" (URSA). Through an exploration of the gut microbiota, metabolites, and immune cell subsets in URSA, this study establishes a link between gut microbiota-derived metabolites and immune cells. The results indicate reduced diversity in the gut microbiota of URSA. Targeted metabolomic analyses reveal decreased levels of gut microbiota-derived deoxycholic acid (DCA), glycolithocholic acid (GLCA), acetate, propionate, and butyrate in URSA. Furthermore, elevated frequencies of Th1, Th17, and plasma B cells, along with decreased frequencies of Tregs and Bregs, are observed in the peripheral blood of URSA. The results demonstrate correlations between the levels of gut microbiota-derived bile acids and short-chain fatty acids and the frequencies of various immune cell subsets in circulation. Collectively, this study uncovers an association between gut microbiota-derived metabolites and circulating immune cell subsets in URSA.
© 2024 The Authors.

  • Homo sapiens (Human)
  • Biochemistry and Molecular biology
  • Cell Biology
  • Immunology and Microbiology

Neuromyelitis optica spectrum disorders (NMOSD) are inflammatory autoimmune disorders of the CNS. IgG autoantibodies targeting the aquaporin-4 water channel (AQP4-IgGs) are the pathogenic effector of NMOSD. Dysregulated T follicular helper (Tfh) cells have been implicated in loss of B cell tolerance in autoimmune diseases. The contribution of Tfh cells to disease activity and therapeutic potential of targeting these cells in NMOSD remain unclear. Here, we established an autoimmune model of NMOSD by immunizing mice against AQP4 via in vivo electroporation. After AQP4 immunization, mice displayed AQP4 autoantibodies in blood circulation, blood-brain barrier disruption, and IgG infiltration in spinal cord parenchyma. Moreover, AQP4 immunization induced motor impairments and NMOSD-like pathologies, including astrocytopathy, demyelination, axonal loss, and microglia activation. These were associated with increased splenic Tfh, Th1, and Th17 cells; memory B cells; and plasma cells. Aqp4-deficient mice did not display motor impairments and NMOSD-like pathologies after AQP4 immunization. Importantly, abrogating ICOS/ICOS-L signaling using anti-ICOS-L antibody depleted Tfh cells and suppressed the response of Th1 and Th17 cells, memory B cells, and plasma cells in AQP4-immunized mice. These findings were associated with ameliorated motor impairments and spinal cord pathologies. This study suggests a role of Tfh cells in the pathophysiology of NMOSD in a mouse model with AQP4 autoimmunity and provides an animal model for investigating the immunological mechanisms underlying AQP4 autoimmunity and developing therapeutic interventions targeting autoimmune reactions in NMOSD.

The aberrant differentiation of T follicular helper (Tfh) cells plays an important role in the pathogenesis of systemic lupus erythematosus (SLE). However, the mechanism of regulating Tfh cells differentiation remains unclear. Long noncoding RNAs (lncRNAs) act as important regulators in the processes of innate and adaptive immune response. Whether lncRNAs are involved in regulating Tfh cell differentiation and autoimmune responses need to be further identified.
The characters and functions of human IL21-AS1 and its mouse homologous lncRNA (mIl21-AS) were investigated by a series of biochemical assays and cell transfection assay. mIl21-AS1 regulating humoral immune response in vivo was explored by keyhole limpet haemocyanin (KLH) and chronic graft versus host disease (cGVHD) model.
Human IL21-AS1 and its mouse homologous lncRNA (mIl21-AS) were identified and cloned. We uncovered that IL21-AS1 was highly expressed in CD4+ T cells of SLE patients and Tfh cells, which promoted differentiation of Tfh cells. Mechanistically, IL21-AS1 bound heterogeneous nuclear ribonucleoprotein U and recruited acetyltransferases CREB-binding protein to the promoter of IL21, leading to the transcriptional activation of IL21 and Tfh cells differentiation through increasing Histone H3 acetylation level on IL21 promoter. Moreover, Tfh proportion and antibodies production were significantly increased in mIl21-AS knock-in mice immunized with KLH. mIl21-AS1 overexpression also exacerbated the lupus-like phenotype in cGVHD mice model.
Our results demonstrate that IL21-AS1 activates IL21 transcription via epigenetic mechanism to promote germinal centre response, adding insight into the molecular regulation of autoimmune pathogenesis and providing a novel target for SLE treatment.
© 2022 The Authors. Clinical and Translational Medicine published by John Wiley & Sons Australia, Ltd on behalf of Shanghai Institute of Clinical Bioinformatics.

  • FC/FACS
  • Homo sapiens (Human)

Profiling circulating T follicular helper cells and their effects on B cells in post-cardiac transplant recipients.

In Annals of Translational Medicine on 1 November 2020 by Wang, Y., Liu, Z., et al.

To evaluate circulating T follicular helper (cTfh) cells and characterize their function in chronic-phase recipients after heart transplantation.
Participants were divided into healthy control (HC, n=40), preoperative (Pre, n=40), and post-transplantation chronic-phase recipient (1-year, n=40) groups. The percentages of cTfh cell subsets and CD19+ B cell subsets were measured using flow cytometry. In vitro co-culture experiments were performed using cTfh cells and B cells isolated by fluorescence-activated cell sorting. Plasma concentrations of IL-21, chemokine ligand 13 (CXCL13), immunoglobulin G1 (IgG1), and immunoglobulin G3 (IgG3) were quantified using enzyme-linked immunosorbent assays (ELISA).
cTfh and programmed cell death protein 1-positive (PD-1+) cTfh cells, the cTfh17/cTfh ratio, and class-switched memory B cells in peripheral blood were significantly increased in the 1-year group versus the HC and Pre groups (P<0.01), whereas the cTfh1/cTfh ratio and number of naïve B cells were significantly decreased in the 1-year group. Co-culture experiments showed that cTfh cells promoted B cell differentiation to plasmablasts. In the 1-year group, cTfh and PD-1+ cTfh cell numbers were positively correlated with plasmablasts in CD19+ B cells (P<0.01). The cTfh17/cTfh ratio was positively correlated with IgG3 concentrations in plasma (P<0.01). The plasma concentrations of interleukin-21 (IL-21) and CXCL13 in the 1-year group were increased compared to the HC and Pre groups (P<0.05). Chronic-phase recipients had increased proportions of CD4+CXCR5+ and CD4+CXCR5+PD-1+ cTfh cells, with a cTfh1-to-cTfh17 subtype conversion. An increased number of cTfh cells was positively correlated with B cell differentiation to plasmablasts, class-switched memory B cells, and greater IgG production.
During the chronic phase, the proportion of cTfh cells increased and enhanced B cell responses. The cTfh-related soluble factors CXCL13 and IL-21 may regulate the immunopathogenesis of chronic immune injury. Thus, cTfh cells may drive long-term immune rejection in chronic-phase recipients after heart transplantation.
2020 Annals of Translational Medicine. All rights reserved.

  • Homo sapiens (Human)
  • Cardiovascular biology
  • Immunology and Microbiology
View this product on CiteAb