Product Citations: 3

Genetic landscape and autoimmunity of monocytes in developing Vogt-Koyanagi-Harada disease.

In Proceedings of the National Academy of Sciences of the United States of America on 13 October 2020 by Hu, Y., Hu, Y., et al.

Vogt-Koyanagi-Harada (VKH) disease is a systemic autoimmune disorder affecting multiple organs, including eyes, skin, and central nervous system. It is known that monocytes significantly contribute to the development of autoimmune disease. However, the subset heterogeneity with unique functions and signatures in human circulating monocytes and the identity of disease-specific monocytic populations remain largely unknown. Here, we employed an advanced single-cell RNA sequencing technology to systematically analyze 11,259 human circulating monocytes and genetically defined their subpopulations. We constructed a precise atlas of human blood monocytes, identified six subpopulations-including S100A12, HLA, CD16, proinflammatory, megakaryocyte-like, and NK-like monocyte subsets-and uncovered two previously unidentified subsets: HLA and megakaryocyte-like monocyte subsets. Relative to healthy individuals, cellular composition, gene expression signatures, and activation states were markedly alternated in VKH patients utilizing cell type-specific programs, especially the CD16 and proinflammatory monocyte subpopulations. Notably, we discovered a disease-relevant subgroup, proinflammatory monocytes, which showed a discriminative gene expression signature indicative of inflammation, antiviral activity, and pathologic activation, and converted into a pathologic activation state implicating the active inflammation during VKH disease. Additionally, we found the cell type-specific transcriptional signature of proinflammatory monocytes, ISG15, whose production might reflect the treatment response. Taken together, in this study, we present discoveries on accurate classification, molecular markers, and signaling pathways for VKH disease-associated monocytes. Therapeutically targeting this proinflammatory monocyte subpopulation would provide an attractive approach for treating VKH, as well as other autoimmune diseases.

  • FC/FACS
  • Homo sapiens (Human)
  • Genetics
  • Immunology and Microbiology

Bone morphogenetic proteins (BMPs) are secreted growth factors that belong to the transforming growth factor beta superfamily. BMPs have been implicated in physiological processes, but they are also involved in many pathological conditions. Multiple sclerosis (MS) is an immune-mediated disease of the central nervous system (CNS); however, its etiology remains elusive. Some evidence points to BMPs as important players in the pathogenesis of inflammatory and autoimmune disorders. In the present work, we studied the expression of BMP2, BMP4, BMP5, BMP6, BMP7, BMP type II receptor, and noggin in the immune system during different phases of experimental autoimmune encephalomyelitis (EAE). Major changes in the expression of BMPs took place in the initial phases of EAE. Indeed, those changes mainly affected BMP6 (whose expression was abrogated), BMP2, and BMP7 (whose expression was increased). In addition, we showed that in vivo inhibition of the BMP signaling pathway with small molecules ameliorated the already established clinical symptoms of EAE, as well as the CNS histopathological features. At the immune level, we observed an expansion of plasmacytoid dendritic cells (pDCs) in mice treated with small molecules that inhibit the BMP signaling pathway. pDCs could play an important role in promoting the expansion of antigen-specific regulatory T cells. Altogether, our data suggest a role for BMPs in early immune events that take place in myelin oligodendrocyte glycoprotein (MOG)-induced EAE. In addition, the clinical outcome of the disease was improved when the BMP signaling pathway was inhibited in mice that presented established EAE symptoms.

  • FC/FACS
  • Immunology and Microbiology

ILK promotes angiogenic activity of mesenchymal stem cells in multiple myeloma.

In Oncology Letters on 1 July 2018 by Zhao, W., Zhang, X., et al.

Angiogenic activity in solid tumors has been demonstrated to promote metastasis through the activation of certain proteins involved in the epithelial-mesenchymal transition-associated process. The molecular mechanism underlying multiple myeloma-induced angiogenesis involves angiogenic cytokines by plasma cells as well as their induction within the microenvironment. Integrin-linked kinase (ILK) is a highly evolutionarily conserved intracellular protein that was originally identified as an integrin-interacting protein, and extensive genetic and biochemical studies have identified ILK expression to be vital during tumor-driven angiogenesis. In the present study, it was identified that angiogenic factors were upregulated in mesenchymal stem cells (MSCs) that were co-cultured with multiple myeloma cell lines. It was also revealed that upregulated ILK expression significantly promoted the capillary-formation ability of MSCs. The concentrations of angiogenic factors were significantly decreased compared with non-targeting siRNA-transfected and control MSCs. MSCs may participate in inducing the angiogenic response in multiple myeloma depending on ILK expression.

  • FC/FACS
  • Homo sapiens (Human)
  • Stem Cells and Developmental Biology
View this product on CiteAb