Product Citations: 16

Deaths from viral hepatitis continue to rise around the world due to the lack of early biomarkers. We aimed here to evaluate the chemokine CXCL14, as a novel biomarker in acute viral hepatitis. We used a mouse model of acute hepatitis induced by murine hepatitis virus (MHV), a hepatotropic and lytic coronavirus, and showed that CXCL14 is overexpressed in the liver and sera of infected mice. Using primary cultures of murine and human hepatocytes, we showed that hepatocytes are the main source of CXCL14 after lytic hepatotropic virus infection and that CXCL14 expression is also induced by the pro-inflammatory cytokines IL-6 and TNFα. CXCL14 KO mice infected with MHV were partially protected and showed an attenuated antiviral immune response compared to wild-type mice. Finally, we show that CXCL14 is overexpressed in the sera of human patients infected with hepatitis viruses A, B, and E or herpes simplex virus. A positive correlation between CXCL14 and ALT levels in the sera of patients with acute herpetic hepatitis, as well as in mice models, suggests that hepatocyte lysis is necessary for the release of CXCL14. Overall, these data highlight that CXCL14 expression is associated with the occurrence of acute viral hepatitis and could be considered an alarmin and a new indicator of inflammation. CXCL14 serum levels are also associated with the severity of viral-induced liver injury.
© 2025 The Author(s). The FASEB Journal published by Wiley Periodicals LLC on behalf of Federation of American Societies for Experimental Biology.

  • Immunology and Microbiology

T helper 9 (Th9) cells are interleukin 9 (IL-9)-producing cells that have diverse functions ranging from antitumor immune responses to allergic inflammation. Th9 cells differentiate from naïve CD4+ T cells in the presence of IL-4 and transforming growth factor-beta (TGF-β); however, our understanding of the molecular basis of their differentiation remains incomplete. Previously, we reported that the differentiation of another subset of TGF-β-driven T helper cells, Th17 cells, is highly dependent on de novo lipid biosynthesis. On the basis of these findings, we hypothesized that lipid metabolism may also be important for Th9 cell differentiation. We therefore investigated the differentiation and function of mouse and human Th9 cells in vitro under conditions of pharmacologically or genetically induced deficiency of the intracellular fatty acid content and in vivo in mice genetically deficient in acetyl-CoA carboxylase 1 (ACC1), an important enzyme for fatty acid biosynthesis. Both the inhibition of de novo fatty acid biosynthesis and the deprivation of environmental lipids augmented differentiation and IL-9 production in mouse and human Th9 cells. Mechanistic studies revealed that the increase in Th9 cell differentiation was mediated by the retinoic acid receptor and the TGF-β-SMAD signaling pathways. Upon adoptive transfer, ACC1-inhibited Th9 cells suppressed tumor growth in murine models of melanoma and adenocarcinoma. Together, our findings highlight a novel role of fatty acid metabolism in controlling the differentiation and in vivo functions of Th9 cells.
© 2024. The Author(s).

  • Biochemistry and Molecular biology
  • Cell Biology
  • Immunology and Microbiology

Early-life establishment of tolerance to commensal bacteria at barrier surfaces carries enduring implications for immune health but remains poorly understood. Here, we showed that tolerance in skin was controlled by microbial interaction with a specialized subset of antigen-presenting cells. More particularly, CD301b+ type 2 conventional dendritic cells (DCs) in neonatal skin were specifically capable of uptake and presentation of commensal antigens for the generation of regulatory T (Treg) cells. CD301b+ DC2 were enriched for phagocytosis and maturation programs, while also expressing tolerogenic markers. In both human and murine skin, these signatures were reinforced by microbial uptake. In contrast to their adult counterparts or other early-life DC subsets, neonatal CD301b+ DC2 highly expressed the retinoic-acid-producing enzyme, RALDH2, the deletion of which limited commensal-specific Treg cell generation. Thus, synergistic interactions between bacteria and a specialized DC subset critically support early-life tolerance at the cutaneous interface.
Copyright © 2023 Elsevier Inc. All rights reserved.

  • FC/FACS
  • Mus musculus (House mouse)
  • Immunology and Microbiology

Nanomedicines based on inorganic nanoparticles have grown in the last decades due to the nanosystems' versatility in the coating, tuneability, and physical and chemical properties. Nonetheless, concerns have been raised regarding the immunotropic profile of nanoparticles and how metallic nanoparticles affect the immune system. Cationic polymer nanoparticles are widely used for cell transfection and proved to exert an adjuvant immunomodulatory effect that improves the efficiency of conventional vaccines against infection or cancer. Likewise, gold nanoparticles (AuNPs) also exhibit diverse effects on immune response depending on size or coatings. Photothermal or photodynamic therapy, radiosensitization, and drug or gene delivery systems take advantage of the unique properties of AuNPs to deeply modify the tumoral ecosystem. However, the collective effects that AuNPs combined with cationic polymers might exert on their own in the tumor immunological microenvironment remain elusive. The purpose of this study was to analyze the triple-negative breast tumor immunological microenvironment upon intratumoral injection of polyethyleneimine (PEI)-AuNP nanocomposites (named AuPEI) and elucidate how it might affect future immunotherapeutic approaches based on this nanosystem. AuPEI nanocomposites were synthesized through a one-pot synthesis method with PEI as both a reducing and capping agent, resulting in fractal assemblies of about 10 nm AuNPs. AuPEI induced an inflammatory profile in vitro in the mouse macrophage-like cells RAW264.7 as determined by the secretion of TNF-α and CCL5 while the immunosuppressor IL-10 was not increased. However, in vivo in the mouse breast MET-1 tumor model, AuPEI nanocomposites shifted the immunological tumor microenvironment toward an M2 phenotype with an immunosuppressive profile as determined by the infiltration of PD-1-positive lymphocytes. This dichotomy in AuPEI nanocomposites in vitro and in vivo might be attributed to the highly complex tumor microenvironment and highlights the importance of testing the immunogenicity of nanomaterials in vitro and more importantly in vivo in relevant immunocompetent mouse tumor models to better elucidate any adverse or unexpected effect.

  • Cancer Research
  • Immunology and Microbiology

Receptor-interacting protein kinase-1 ablation in liver parenchymal cells promotes liver fibrosis in murine NASH without affecting other symptoms.

In Journal of Molecular Medicine (Berlin, Germany) on 1 July 2022 by Farooq, M., Simoes Eugénio, M., et al.

Non-alcoholic steatohepatitis (NASH), a chronic liver disease that emerged in industrialized countries, can further progress into liver fibrosis, cirrhosis, and hepatocellular carcinoma. In the next decade, NASH is predicted to become the leading cause of liver transplantation, the only current interventional therapeutic option. Hepatocyte death, triggered by different death ligands, plays key role in its progression. Previously, we showed that the receptor-interacting protein kinase-1 (RIPK1) in hepatocytes exhibits a protective role in ligand-induced death. Now, to decipher the role of RIPK1 in NASH, Ripk1LPC-KO mice, deficient for RIPK1 only in liver parenchymal cells, and their wild-type littermates (Ripk1fl/fl) were fed for 3, 5, or 12 weeks with high-fat high-cholesterol diet (HFHCD). The main clinical signs of NASH were analyzed to compare the pathophysiological state established in mice. Most of the symptoms evolved similarly whatever the genotype, whether it was the increase in liver to body weight ratio, the steatosis grade or the worsening of liver damage revealed by serum transaminase levels. In parallel, inflammation markers followed the same kinetics with significant equivalent inductions of cytokines (hepatic mRNA levels and blood cytokine concentrations) and a main peak of hepatic infiltration of immune cells at 3 weeks of HFHCD. Despite this identical inflammatory response, more hepatic fibrosis was significantly evidenced at week 12 in Ripk1LPC-KO mice. This coincided with over-induced rates of transcripts of genes implied in fibrosis development (Tgfb1, Tgfbi, Timp1, and Timp2) in Ripk1LPC-KO animals. In conclusion, our results show that RIPK1 in hepatocyte limits the progression of liver fibrosis during NASH.
© 2022. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.

  • Mus musculus (House mouse)
  • Biochemistry and Molecular biology
View this product on CiteAb