Product Citations: 4

Toward a better definition of hematopoietic progenitors suitable for B cell differentiation.

In PLoS ONE on 16 December 2020 by Dubois, F., Gaignerie, A., et al.

The success of inducing human pluripotent stem cells (hIPSC) offers new opportunities for cell-based therapy. Since B cells exert roles as effector and as regulator of immune responses in different clinical settings, we were interested in generating B cells from hIPSC. We differentiated human embryonic stem cells (hESC) and hIPSC into B cells onto OP9 and MS-5 stromal cells successively. We overcame issues in generating CD34+CD43+ hematopoietic progenitors with appropriate cytokine conditions and emphasized the difficulties to generate proper hematopoietic progenitors. We highlight CD31intCD45int phenotype as a possible marker of hematopoietic progenitors suitable for B cell differentiation. Defining precisely proper lymphoid progenitors will improve the study of their lineage commitment and the signals needed during the in vitro process.

  • FC/FACS
  • Immunology and Microbiology

Malignant transformation and progression of cancer are driven by the co-evolution of cancer cells and their dysregulated tumor microenvironment (TME). Recent studies on immunotherapy demonstrate the efficacy in reverting the anti-tumoral function of T cells, highlighting the therapeutic potential in targeting certain cell types in TME. However, the functions of other immune cell types remain largely unexplored.
We conduct a single-cell RNA-seq analysis of cells isolated from tumor tissue samples of non-small cell lung cancer (NSCLC) patients, and identify subtypes of tumor-infiltrated B cells and their diverse functions in the progression of NSCLC. Flow cytometry and immunohistochemistry experiments on two independent cohorts confirm the co-existence of the two major subtypes of B cells, namely the naïve-like and plasma-like B cells. The naïve-like B cells are decreased in advanced NSCLC, and their lower level is associated with poor prognosis. Co-culture of isolated naïve-like B cells from NSCLC patients with two lung cancer cell lines demonstrate that the naïve-like B cells suppress the growth of lung cancer cells by secreting four factors negatively regulating the cell growth. We also demonstrate that the plasma-like B cells inhibit cancer cell growth in the early stage of NSCLC, but promote cell growth in the advanced stage of NSCLC. The roles of the plasma-like B cell produced immunoglobulins, and their interacting proteins in the progression of NSCLC are further validated by proteomics data.
Our analysis reveals versatile functions of tumor-infiltrating B cells and their potential clinical implications in NSCLC.

  • Homo sapiens (Human)
  • Cancer Research
  • Immunology and Microbiology

Phenotypic Identification of Dental Pulp Mesenchymal Stem/Stromal Cells Subpopulations with Multiparametric Flow Cytometry.

In Methods in Molecular Biology (Clifton, N.J.) on 7 March 2019 by Ducret, M., Farges, J. C., et al.

Dental pulp (DP) is a specialized, highly vascularized, and innervated connective tissue mainly composed of undifferentiated mesenchymal cells, fibroblasts, and highly differentiated dentin-forming odontoblasts. Undifferentiated mesenchymal cells include stem/stromal cell populations usually called dental pulp mesenchymal stem cells (DP-MSCs) which differ in their self-renewal properties, lineage commitment, and differentiation capabilities. Analysis of surface antigens has been largely used to precisely identify these DP-MSC populations. However, a major difficulty is that these antigens are actually not specific for MSCs. Most of the markers used are indeed shared by other cell populations such as progenitor cells, mature fibroblasts, and/or perivascular cells. Accordingly, the detection of only one of these markers in a cell population is clearly insufficient to determine its stemness. Recent data reported that multiparametric flow cytometry, by allowing for the detection of several molecules on the surface of one single cell, is a powerful tool to elucidate the phenotype of a cell population both in vivo and in vitro. So far, DP-MSC populations have been characterized mainly based on the isolated expression of molecules known to be expressed by stem cells, such as Stro-1 antigen, melanoma cell adhesion molecule MCAM/CD146, low-affinity nerve growth factor receptor p75NTR/CD271, and the mesenchymal stem cell antigen MSCA-1. Using multiparametric flow cytometry, we recently showed that human DP-MSCs are indeed phenotypically heterogeneous and form several populations.The present paper describes the multiparametric flow cytometry protocol we routinely use for characterizing DP-MSCs. The description includes the design of the antibody panel and explains the selection of the different parameters related to the data quality control.

  • Biochemistry and Molecular biology

Mesenchymal stromal/stem cells (MSCs) from human dental pulp (DP) can be expanded in vitro for cell-based and regenerative dentistry therapeutic purposes. However, their heterogeneity may be a hurdle to the achievement of reproducible and predictable therapeutic outcomes. To get a better knowledge about this heterogeneity, we designed a flow cytometric strategy to analyze the phenotype of DP cells in vivo and upon in vitro expansion with stem cell markers. We focused on the CD31- cell population to exclude endothelial and leukocytic cells. Results showed that the in vivo CD31- DP cell population contained 1.4% of CD56+, 1.5% of CD146+, 2.4% of CD271+ and 6.3% of MSCA-1+ cells but very few Stro-1+ cells (≤ 1%). CD56+, CD146+, CD271+, and MSCA-1+ cell subpopulations expressed various levels of these markers. CD146+MSCA-1+, CD271+MSCA-1+, and CD146+CD271+ cells were the most abundant DP-MSC populations. Analysis of DP-MSCs expanded in vitro with a medicinal manufacturing approach showed that CD146 was expressed by about 50% of CD56+, CD271+, MSCA-1+, and Stro-1+ cells, and MSCA-1 by 15-30% of CD56+, CD146+, CD271+, and Stro-1+ cells. These ratios remained stable with passages. CD271 and Stro-1 were expressed by <1% of the expanded cell populations. Interestingly, the percentage of CD56+ cells strongly increased from P1 (25%) to P4 (80%) both in all sub-populations studied. CD146+CD56+, MSCA-1+CD56+, and CD146+MSCA-1+ cells were the most abundant DP-MSCs at the end of P4. These results established that DP-MSCs constitute a heterogeneous mixture of cells in pulp tissue in vivo and in culture, and that their phenotype is modified upon in vitro expansion. Further studies are needed to determine whether co-expression of specific MSC markers confers DP cells specific properties that could be used for the regeneration of human tissues, including the dental pulp, with standardized cell-based medicinal products.

  • Homo sapiens (Human)
  • Endocrinology and Physiology
View this product on CiteAb