Product Citations: 87

The IL-22-oncostatin M axis promotes intestinal inflammation and tumorigenesis.

In Nature Immunology on 1 June 2025 by Cineus, R., Luo, Y., et al.

Multicellular cytokine networks drive intestinal inflammation and colitis-associated cancer (CAC). Interleukin-22 (IL-22) exerts both protective and pathogenic effects in the intestine, but the mechanisms that regulate this balance remain unclear. Here, we identify that IL-22 directly induces responsiveness to the IL-6 family cytokine oncostatin M (OSM) in intestinal epithelial cells (IECs) by activating STAT3 and upregulating the OSM receptor. In turn, OSM synergizes with IL-22 to sustain STAT3 activation in IECs and promote proinflammatory epithelial adaptation and immune cell chemotaxis to the inflamed intestine. Conditional deletion of the OSM receptor in IECs protects mice from both colitis and CAC, and pharmacological blockade of OSM attenuates established CAC. Thus, IL-22 and OSM form a pathogenic circuit that drives inflammation and tumorigenesis. Our findings reveal a previously unknown mechanism by which OSM supports intestinal pathology and highlight the IL-22-OSM axis as a promising therapeutic target for inflammatory bowel disease and CAC.
© 2025. The Author(s).

  • Immunology and Microbiology

Sphingolipid metabolism orchestrates establishment of the hair follicle stem cell compartment.

In The Journal of Cell Biology on 7 April 2025 by Peters, F., Höfs, W., et al.

Sphingolipids serve as building blocks of membranes to ensure subcellular compartmentalization and facilitate intercellular communication. How cell type-specific lipid compositions are achieved and what is their functional significance in tissue morphogenesis and maintenance has remained unclear. Here, we identify a stem cell-specific role for ceramide synthase 4 (CerS4) in orchestrating fate decisions in skin epidermis. Deletion of CerS4 prevents the proper development of the adult hair follicle bulge stem cell (HFSC) compartment due to altered differentiation trajectories. Mechanistically, HFSC differentiation defects arise from an imbalance of key ceramides and their derivate sphingolipids, resulting in hyperactivation of noncanonical Wnt signaling. This impaired HFSC compartment establishment leads to disruption of hair follicle architecture and skin barrier function, ultimately triggering a T helper cell 2-dominated immune infiltration resembling human atopic dermatitis. This work uncovers a fundamental role for a cell state-specific sphingolipid profile in stem cell homeostasis and in maintaining an intact skin barrier.
© 2025 Peters et al.

  • FC/FACS
  • Biochemistry and Molecular biology
  • Cell Biology
  • Stem Cells and Developmental Biology

Embryo-restricted responses to maternal IL-17A promote neurodevelopmental disorders in mouse offspring.

In Molecular Psychiatry on 1 April 2025 by Andruszewski, D., Uhlfelder, D. C., et al.

Prenatal imprinting to interleukin 17A (IL-17A) triggers behavioral disorders in offspring. However, reported models of maternal immune activation utilizing immunostimulants, lack specificity to elucidate the anatomical compartments of IL-17A's action and the distinct behavioral disturbances it causes. By combining transgenic IL-17A overexpression with maternal deficiency in its receptor, we established a novel model of prenatal imprinting to maternal IL-17A (acronym: PRIMA-17 model). This model allowed us to study prenatal imprinting established exclusively through embryo-restricted IL-17A responses. We demonstrated a transfer of transgenic IL-17A across the placental barrier, which triggered the development of selected behavioral deficits in mouse offspring. More specifically, embryonic responses to IL-17A resulted in communicative impairment in early-life measured by reduced numbers of nest retrieval calls. In adulthood, IL-17A-imprinted offspring displayed an increase in anxiety-like behavior. We advocate our PRIMA-17 model as a useful tool to study neurological deficits in mice.
© 2024. The Author(s).

  • Stem Cells and Developmental Biology

Concomitant loss of TET2 and TET3 results in T cell expansion and genomic instability in mice.

In Communications Biology on 3 December 2024 by Gioulbasani, M., Äijö, T., et al.

Ten eleven translocation (TET) proteins are tumor suppressors that through their catalytic activity oxidize 5-methylcytosine to 5-hydroxymethylcytosine, to promote DNA demethylation and to regulate gene expression. Notably, TET2 is one of the most frequently mutated genes in hematological malignancies, including T cell lymphomas. However, murine models with deletion of TET2 do not exhibit T cell expansion, presumably due to redundancy with other members of the TET family of proteins. In order to gain insight on the TET mediated molecular events that safeguard T cells from aberrant proliferation we performed serial adoptive transfers of murine CD4 T cells that lack concomitantly TET2 and TET3 to fully immunocompetent congenic mice. Here we show a progressive acquisition of malignant traits upon loss of TET2 and TET3 that is characterized by loss of genomic integrity, acquisition of aneuploidy and upregulation of the protooncogene Myc.
© 2024. The Author(s).

  • FC/FACS
  • Mus musculus (House mouse)
  • Immunology and Microbiology

Probiotics and their metabolite spermidine enhance IFN-γ+CD4+ T cell immunity to inhibit hepatitis B virus.

In Cell Reports Medicine on 19 November 2024 by Wang, T., Fan, Y., et al.

The therapeutic potential of commensal microbes and their metabolites is promising in the functional cure of chronic hepatitis B virus (HBV) infection, which is defined as hepatitis B surface antigen (HBsAg) loss. Here, using both specific-pathogen-free and germ-free mice, we report that probiotics significantly promote the decline of HBsAg and inhibit HBV replication by enhancing intestinal homeostasis and provoking intrahepatic interferon (IFN)-γ+CD4+ T cell immune response. Depletion of CD4+ T cells or blockage of IFN-γ abolishes probiotics-mediated HBV inhibition. Specifically, probiotics-derived spermidine accumulates in the gut and transports to the liver, where it exhibits a similar anti-HBV effect. Mechanistically, spermidine enhances IFN-γ+CD4+ T cell immunity by autophagy. Strikingly, administration of probiotics in HBV patients reveals a preliminary trend to accelerate the decline of serum HBsAg. In conclusion, probiotics and their derived spermidine promote HBV clearance via autophagy-enhanced IFN-γ+CD4+ T cell immunity, highlighting the therapeutic potential of probiotics and spermidine for the functional cure of HBV patients.
Copyright © 2024 The Author(s). Published by Elsevier Inc. All rights reserved.

  • Cell Biology
  • Immunology and Microbiology
View this product on CiteAb