Product Citations: 19

Selecting a booster vaccine strategy that generates cellular immune breadth is crucial for effectively recalling cellular reservoirs upon infection with severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) variants. This post hoc analysis from a multicentre, randomized phase 3 study (CTRI/2022/10/046475) compared the cellular immune breadth induced by self-replicating mRNA (samRNA) vaccine GEMCOVAC-OM, encoding Omicron B.1.1.529 Spike protein, with the adenovector vaccine ChAdOx1 nCoV-19, encoding Wuhan variant Spike protein, when administered as a booster. GEMCOVAC-OM elicited significant expansion of memory B-cells (MBCs) specific to Omicron B.1.1.529, compared to ChAdOx1 nCoV-19. GEMCOVAC-OM also induced more B-cells reactive to Omicron XBB.1.5 and BA.2.86 Spike proteins. Additionally, GEMCOVAC-OM triggered higher frequencies of Omicron-Spike-specific T-cells, including stem cell, central, and effector memory subsets. In summary, while ChAdOx1 nCoV-19 showed some cross-reactivity, GEMCOVAC-OM induced a more targeted immune response. GEMCOVAC-OM offers a broader, longer-lasting immunity, making it a promising candidate for future vaccine development and global distribution.
© 2025. The Author(s).

  • Homo sapiens (Human)
  • COVID-19
  • Genetics
  • Immunology and Microbiology

An Omicron-specific, self-amplifying mRNA booster vaccine for COVID-19: a phase 2/3 randomized trial.

In Nature Medicine on 1 May 2024 by Saraf, A., Gurjar, R., et al.

Here we conducted a multicenter open-label, randomized phase 2 and 3 study to assess the safety and immunogenicity of a severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Omicron-specific (BA.1/B.1.1.529), monovalent, thermostable, self-amplifying mRNA vaccine, GEMCOVAC-OM, when administered intradermally as a booster in healthy adults who had received two doses of BBV152 or ChAdOx1 nCoV-19. GEMCOVAC-OM was well tolerated with no related serious adverse events in both phase 2 and phase 3. In phase 2, the safety and immunogenicity of GEMCOVAC-OM was compared with our prototype mRNA vaccine GEMCOVAC-19 (D614G variant-specific) in 140 participants. At day 29 after vaccination, there was a significant rise in anti-spike (BA.1) IgG antibodies with GEMCOVAC-OM (P < 0.0001) and GEMCOVAC-19 (P < 0.0001). However, the IgG titers (primary endpoint) and seroconversion were higher with GEMCOVAC-OM (P < 0.0001). In phase 3, GEMCOVAC-OM was compared with ChAdOx1 nCoV-19 in 3,140 participants (safety cohort), which included an immunogenicity cohort of 420 participants. At day 29, neutralizing antibody titers against the BA.1 variant of SARS-CoV-2 were significantly higher than baseline in the GEMCOVAC-OM arm (P < 0.0001), but not in the ChAdOx1 nCoV-19 arm (P = 0.1490). GEMCOVAC-OM was noninferior (primary endpoint) and superior to ChAdOx1 nCoV-19 in terms of neutralizing antibody titers and seroconversion rate (lower bound 95% confidence interval of least square geometric mean ratio >1 and difference in seroconversion >0% for superiority). At day 29, anti-spike IgG antibodies and seroconversion (secondary endpoints) were significantly higher with GEMCOVAC-OM (P < 0.0001). These results demonstrate that GEMCOVAC-OM is safe and boosts immune responses against the B.1.1.529 variant. Clinical Trial Registry India identifier: CTRI/2022/10/046475 .
© 2024. The Author(s).

  • COVID-19
  • Genetics
  • Immunology and Microbiology

Enhanced Th17 responses in the appendix of children with complex compared to simple appendicitis are associated with microbial dysbiosis.

In Frontiers in Immunology on 19 January 2024 by The, S. M. L., Schreurs, R. R. C. E., et al.

Appendicitis is one of the most common causes of acute abdominal surgery in children. The clinical course of appendicitis ranges from simple to complex appendicitis. The mechanisms underlying the heterogeneity of appendicitis in children remain largely unclear. Dysregulated T cell responses play an important role in several inflammatory diseases of the intestine, but the extend of T cell dysregulation in appendicitis in children is less well known.
To characterize appendiceal T cells in simple and complex appendicitis we performed in-depth immunophenotyping of appendiceal-derived T cells by flow cytometry and correlated this to appendiceal-derived microbiota analyses of the same patient.
Appendix samples of twenty children with appendicitis (n = 8 simple, n = 12 complex) were collected. T cells in complex appendicitis displayed an increased differentiated phenotype compared to simple appendicitis, including a loss of both CD27 and CD28 by CD4+ T cells and to a lesser extent by CD8+ T cells. Frequencies of phenotypic tissue-resident memory CD69+CD4+ T cells and CD69+CD8+ T cells were decreased in children with complex compared to simple appendicitis, indicating disruption of local tissue-resident immune responses. In line with the increased differentiated phenotype, cytokine production of in particular IL-17A by CD4+ T cells was increased in children with complex compared to simple appendicitis. Furthermore, frequencies of IL-17A+ CD4+ T cells correlated with a dysregulation of the appendiceal microbiota in children with complex appendicitis.
In conclusion, disruption of local T cell responses, and enhanced pro-inflammatory Th17 responses correlating to changes in the appendiceal microbiota were observed in children with complex compared to simple appendicitis. Further studies are needed to decipher the role of a dysregulated network of microbiota and Th17 cells in the development of complex appendicitis in children.
Copyright © 2024 The, Schreurs, Drewniak, Bakx, de Meij, Budding, Poort, Cense, Heij, van Heurn, Gorter and Bunders.

  • Immunology and Microbiology

Autologous anti-CD19 chimeric antigen receptor T cell (CAR T) therapy is highly effective in relapsed/refractory large B cell lymphoma (rrLBCL) but is associated with toxicities that delay recovery. While the biological mechanisms of cytokine release syndrome and neurotoxicity have been investigated, the pathophysiology is poorly understood for prolonged cytopenia, defined as grade ≥3 cytopenia lasting beyond 30 days after CAR T infusion. We performed single-cell RNA sequencing of bone marrow samples from healthy donors and rrLBCL patients with or without prolonged cytopenia and identified significantly increased frequencies of clonally expanded CX3CR1hi cytotoxic T cells, expressing high interferon (IFN)-γ and cytokine signaling gene sets, associated with prolonged cytopenia. In line with this, we found that hematopoietic stem cells from these patients expressed IFN-γ response signatures. IFN-γ deregulates hematopoietic stem cell self-renewal and differentiation and can be targeted with thrombopoietin agonists or IFN-γ-neutralizing antibodies, highlighting a potential mechanism-based approach for the treatment of CAR T-associated prolonged cytopenia.
Copyright © 2023 The Author(s). Published by Elsevier Inc. All rights reserved.

  • Homo sapiens (Human)
  • Immunology and Microbiology

Cord blood T cells (CBTC) from a proportion of newborns express low/deficient levels of some protein kinase C (PKC) isozymes, with low levels of PKCζ correlating with increased risk of developing allergy and associated decrease in interferon-gamma (IFN-γ) producing T cells. Interestingly, these lower levels of PKCζ were increased/normalized by supplementing women during pregnancy with n-3 polyunsaturated fatty acids. However, at present, we have little understanding of the transient nature of the deficiency in the neonate and how PKCζ relates to other PKC isozymes and whether their levels influence maturation into IFN-γ producing T cells. There is also no information on PKCζ isozyme levels in the T cell subpopulations, CD4+ and CD8+ cells. These issues were addressed in the present study using a classical culture model of neonatal T cell maturation, initiated with phytohaemagglutinin (PHA) and recombinant human interleukin-2 (rhIL-2). Of the isozymes evaluated, PKCζ, β2, δ, μ, ε, θ and λ/ι were low in CBTCs. The PKC isozyme deficiencies were also found in the CD4+ and CD8+ T cell subset levels of the PKC isozymes correlated between the two subpopulations. Examination of changes in the PKC isozymes in these deficient cells following addition of maturation signals showed a significant increase in expression within the first few hours for PKCζ, β2 and μ, and 1-2 days for PKCδ, ε, θ and λ/ι. Only CBTC PKCζ isozyme levels correlated with cytokine production, with a positive correlation with IFN-γ, interleukin (IL)-2 and tumour necrosis factor-alpha (TNF), and a negative association with IL-9 and IL-10. The findings reinforce the specificity in using CBTC PKCζ levels as a biomarker for risk of allergy development and identify a period in which this can be potentially 'corrected' after birth.

  • Homo sapiens (Human)
  • Cardiovascular biology
  • Immunology and Microbiology
View this product on CiteAb