Product Citations: 9

Severe influenza virus-infected patients have high systemic levels of Th1 cytokines (including IFN-γ). Intrapulmonary IFN-γ increases pulmonary IFN-γ-producing T lymphocytes through the CXCR3 pathway. Virus-infected mice lacking IP-10/CXCR3 demonstrate lower pulmonary neutrophilic inflammation. AMG487, an IP-10/CXCR3 antagonist, ameliorates virus-induced lung injury in vivo through decreasing viral loads. This study examined whether AMG487 could treat H1N1 virus-induced mouse illness through reducing viral loads or decreasing the number of lymphocytes or neutrophils.
Here, we studied the above-mentioned effects and underlying mechanisms in vivo.
H1N1 virus infection caused bad overall condition and pulmonary inflammation characterized by the infiltration of lymphocytes and neutrophils. From Day-5 to Day-10 post-virus infection, bad overall condition, pulmonary lymphocytes, and IFN-γ concentrations increased, while pulmonary H1N1 viral titres and neutrophils decreased. Both anti-IFN-γ and AMG487 alleviated virus infection-induced bad overall condition and pulmonary lymphocytic inflammation. Pulmonary neutrophilic inflammation was mitigated by AMG487 on Day-5 post-infection, but was not mitigated by AMG487 on Day-10 post-infection. H1N1 virus induced increases of IFN-γ, IP-10, and IFN-γ-producing lymphocytes and activation of the Jak2-Stat1 pathways in mouse lungs, which were inhibited by AMG487. Anti-IFN-γ decreased IFN-γ and IFN-γ-producing lymphocytes on Day-5 post-infection. AMG487 but not anti-IFN-γ decreased viral titres in mouse lung homogenates or BALF. Higher virus load did not increase pulmonary inflammation and IFN-γ concentrations when mice were treated with AMG487.
AMG487 may ameliorate H1N1 virus-induced pulmonary inflammation through decreasing IFN-γ-producing lymphocytes rather than reducing viral loads or neutrophils.
© 2024 British Pharmacological Society.

  • FC/FACS
  • Mus musculus (House mouse)
  • Cardiovascular biology
  • Immunology and Microbiology
  • Pharmacology

CD8+ T cells responding to chronic infection adapt an altered differentiation program that provides some restraint on pathogen replication yet limits immunopathology. This adaptation is imprinted in stem-like cells and propagated to their progeny. Understanding the molecular control of CD8+ T cell differentiation in chronic infection has important therapeutic implications. Here, we find that the chemokine receptor CXCR3 is highly expressed on viral-specific stem-like CD8+ T cells and that one of its ligands, CXCL10, regulates the persistence and heterogeneity of responding CD8+ T cells in spleens of mice chronically infected with lymphocytic choriomeningitis virus. CXCL10 is produced by inflammatory monocytes and fibroblasts of the splenic red pulp, where it grants stem-like cells access to signals promoting differentiation and limits their exposure to pro-survival niches in the white pulp. Consequently, functional CD8+ T cell responses are greater in Cxcl10-/- mice and are associated with a lower viral set point.
Copyright © 2021 Elsevier Inc. All rights reserved.

  • Mus musculus (House mouse)
  • Immunology and Microbiology

The role of protease-activated receptor 1 signaling in CD8 T cell effector functions.

In IScience on 19 November 2021 by Chen, H., Smith, M., et al.

CD8 T cells are essential for adaptive immunity against viral infections. Protease activated receptor 1 (PAR1) is expressed by CD8 T cells; however, its role in T cell effector function is not well defined. Here we show that in human CD8 T cells, PAR1 stimulation accelerates calcium mobilization. Furthermore, PAR1 is involved in cytotoxic T cell function by facilitating granule trafficking via actin polymerization and repositioning of the microtubule organizing center (MTOC) toward the immunological synapse. In vivo, PAR1-/- mice have reduced cytokine-producing T cells in response to a lymphocytic choriomeningitis virus (LCMV) infection and fail to efficiently control the virus. Specific deletion of PAR1 in LCMV GP33-specific CD8 T cells results in reduced expansion and diminished effector function. These data demonstrate that PAR1 plays a role in T cell activation and function, and this pathway could represent a new therapeutic strategy to modulate CD8 T cell effector function.
© 2021 The Author(s).

  • Mus musculus (House mouse)
  • Immunology and Microbiology

In tumors, a subset of CD8+ T cells expressing the transcription factor TCF-1 drives the response to immune checkpoint blockade. We examined the mechanisms that maintain these cells in an autochthonous model of lung adenocarcinoma. Longitudinal sampling and single-cell sequencing of tumor-antigen specific TCF-1+ CD8+ T cells revealed that while intratumoral TCF-1+ CD8+ T cells acquired dysfunctional features and decreased in number as tumors progressed, TCF-1+ CD8+ T cell frequency in the tumor draining LN (dLN) remained stable. Two discrete intratumoral TCF-1+ CD8+ T cell subsets developed over time-a proliferative SlamF6+ subset and a non-cycling SlamF6- subset. Blocking dLN egress decreased the frequency of intratumoral SlamF6+ TCF-1+ CD8+ T cells. Conventional type I dendritic cell (cDC1) in dLN decreased in number with tumor progression, and Flt3L+anti-CD40 treatment recovered SlamF6+ T cell frequencies and decreased tumor burden. Thus, cDC1s in tumor dLN maintain a reservoir of TCF-1+ CD8+ T cells and their decrease contributes to failed anti-tumor immunity.
Copyright © 2021 Elsevier Inc. All rights reserved.

  • Mus musculus (House mouse)
  • Cancer Research
  • Immunology and Microbiology

Antigen dominance hierarchies shape TCF1+ progenitor CD8 T cell phenotypes in tumors.

In Cell on 16 September 2021 by Burger, M. L., Cruz, A. M., et al.

CD8 T cell responses against different tumor neoantigens occur simultaneously, yet little is known about the interplay between responses and its impact on T cell function and tumor control. In mouse lung adenocarcinoma, we found that immunodominance is established in tumors, wherein CD8 T cell expansion is predominantly driven by the antigen that most stably binds MHC. T cells responding to subdominant antigens were enriched for a TCF1+ progenitor phenotype correlated with response to immune checkpoint blockade (ICB) therapy. However, the subdominant T cell response did not preferentially benefit from ICB due to a dysfunctional subset of TCF1+ cells marked by CCR6 and Tc17 differentiation. Analysis of human samples and sequencing datasets revealed that CCR6+ TCF1+ cells exist across human cancers and are not correlated with ICB response. Vaccination eliminated CCR6+ TCF1+ cells and dramatically improved the subdominant response, highlighting a strategy to optimally engage concurrent neoantigen responses against tumors.
Copyright © 2021 Elsevier Inc. All rights reserved.

  • FC/FACS
  • Mus musculus (House mouse)
  • Cancer Research
  • Immunology and Microbiology
View this product on CiteAb