Product Citations: 45

Targeting TM4SF1 promotes tumor senescence enhancing CD8+ T cell cytotoxic function in hepatocellular carcinoma.

In Clinical and Molecular Hepatology on 1 April 2025 by Zeng, W., Liu, F., et al.

Transmembrane 4 L six family member 1 (TM4SF1) is highly expressed and contributes to the progression of various malignancies. However, how it modulates hepatocellular carcinoma (HCC) progression and senescence remains to be elucidated.
TM4SF1 expression in HCC samples was evaluated using immunohistochemistry and flow cytometry. Cellular senescence was assessed through SA-β-gal activity assays and Western blot analysis. TM4SF1-related protein interactions were investigated using immunoprecipitation-mass spectrometry, co-immunoprecipitation, bimolecular fluorescence complementation, and immunofluorescence. Tumor-infiltrating immune cells were analyzed by flow cytometry. The HCC mouse model was established via hydrodynamic tail vein injection.
TM4SF1 was highly expressed in human HCC samples and murine models. Knockdown of TM4SF1 suppressed HCC proliferation both in vitro and in vivo, inducing non-secretory senescence through upregulation of p16 and p21. TM4SF1 enhanced the interaction between AKT1 and PDPK1, thereby promoting AKT phosphorylation, which subsequently downregulated p16 and p21. Meanwhile, TM4SF1-mediated AKT phosphorylation enhanced PD-L1 expression while reducing major histocompatibility complex class I level on tumor cells, leading to impaired cytotoxic function of CD8+ T cells and an increased proportion of exhausted CD8+ T cells. In clinical HCC samples, elevated TM4SF1 expression was associated with resistance to anti-PD-1 immunotherapy. Targeting TM4SF1 via adeno-associated virus induced tumor senescence, reduced tumor burden and synergistically enhanced the efficacy of anti-PD-1 therapy.
Our results revealed that TM4SF1 regulated tumor cell senescence and immune evasion through the AKT pathway, highlighting its potential as a therapeutic target in HCC, particularly in combination with first-line immunotherapy.

  • Cancer Research
  • Immunology and Microbiology

Here, we present a protocol for guiding tissue preparation and flow cytometric analysis in subcutaneous murine tumor models and secondary lymphoid organs. We describe steps for dissociating tumors, spleens, and lymph nodes to obtain single-cell suspensions. We then detail procedures for immune cell staining and analysis and gating strategies including the use of fluorescence-minus-one controls (FMOs). This approach provides valuable insights into the impact of cancer therapies on the tumor and systemic immune response. For complete details on the use and execution of this protocol, please refer to Ingelshed et al.1.
Copyright © 2024 The Author(s). Published by Elsevier Inc. All rights reserved.

  • Cancer Research
  • Immunology and Microbiology

Cancer-associated fibroblasts (CAFs) represent a major contributor to tumor growth. Cellular senescence is a state of cell-cycle arrest characterized by a pro-inflammatory phenotype. The potential impact of CAF senescence on tumor progression and the tumor microenvironment (TME) remains to be elucidated. Here, we systematically investigated the relationship between CAF senescence and the TME of pancreatic ductal adenocarcinoma (PDAC) based on multi-omics analysis and functional experiments. CAF senescence promotes tumor progression in vitro and in vivo and contributes to the formation of immunosuppressive TME. A CAF-senescence-related risk score was developed to predict overall survival, immune landscape, and treatment sensitivity in patients with PDAC. Further experiments revealed that plasminogen activator urokinase (PLAU) derived from senescent CAFs (SCAFs) promoted PDAC progression and was involved in immunosuppression. Together, these findings suggested that CAF senescence was correlated with tumor progression, and the CAF-senescence-based machine learning model could potentially predict prognosis in patients with PDAC.
© 2024 The Author(s).

  • Cancer Research
  • Immunology and Microbiology

Immunotherapy has revolutionized cancer treatment but its efficacy depends on a robust immune response in the tumor. Silencing of the tumor suppressor p53 is common in tumors and can affect the recruitment and activation of different immune cells, leading to immune evasion and poor therapy response. We found that the p53 activating stapled peptide MDM2/MDMX inhibitor Sulanemadlin (ALRN-6924) inhibited p53 wild-type cancer cell growth in vitro and in vivo. In mice carrying p53 wild-type CT26.WT tumors, monotherapy with the PD-1 inhibitor DX400 or Sulanemadlin delayed tumor doubling time by 50% and 37%, respectively, while combination therapy decreased tumor doubling time by 93% leading to an increased median survival time. Sulanemadlin treatment led to increased immunogenicity and combination treatment with PD-1 inhibition resulted in an increased tumor infiltration of lymphocytes. This combination treatment strategy could potentially turn partial responders into responders of immunotherapy, expanding the patient target group for PD-1-targeting immunotherapy.
© 2024 The Author(s).

  • Cancer Research
  • Immunology and Microbiology

Cardiac resident MerTK+ macrophages exert multiple protective roles after ischemic injury; however, the mechanisms regulating their fate are not fully understood. In the present study, we show that the GAS6-inducible transcription factor, activating transcription factor 3 (ATF3), prevents apoptosis of MerTK+ macrophages after ischemia-reperfusion (IR) injury by repressing the transcription of multiple genes involved in type I interferon expression (Ifih1 and Ifnb1) and apoptosis (Apaf1). Mice lacking ATF3 in cardiac macrophages or myeloid cells showed excessive loss of MerTK+ cardiac macrophages, poor angiogenesis and worse heart dysfunction after IR, which were rescued by the transfer of MerTK+ cardiac macrophages. GAS6 administration improved cardiac repair in an ATF3-dependent manner. Finally, we showed a negative association of GAS6 and ATF3 expression with the risk of major adverse cardiac events in patients with ischemic heart disease. These results indicate that the GAS6-ATF3 axis has a protective role against IR injury by regulating MerTK+ cardiac macrophage survival and/or proliferation.
© 2024. The Author(s).

  • Cardiovascular biology
View this product on CiteAb