Product Citations: 8

Loss of SLC26A3 Results in Colonic Mucosal Immune Dysregulation via Epithelial-Immune Cell Crosstalk.

In Cellular and Molecular Gastroenterology and Hepatology on 20 December 2022 by Jayawardena, D., Priyamvada, S., et al.

Down-regulation of chloride transporter SLC26A3 or down-regulated in adenoma (DRA) in colonocytes has recently been linked to the pathogenesis of ulcerative colitis (UC). Because exaggerated immune responses are one of the hallmarks of UC, these current studies were undertaken to define the mechanisms by which loss of DRA relays signals to immune cells to increase susceptibility to inflammation.
NanoString Immunology Panel, fluorescence assisted cell sorting, immunoblotting, immunofluorescence, and quantitative real-time polymerase chain reaction assays were used in wild-type and DRA knockout (KO) mice. Interleukin (IL)-33 blocking was used to determine specific changes in immune cells and co-housing/broad spectrum antibiotics administration, and ex vivo studies in colonoids were conducted to rule out the involvement of microbiota. Colonoid-derived monolayers from healthy and UC patient biopsies were analyzed for translatability.
There was a marked induction of Th2 (>2-fold), CD4+ Th2 cells (∼8-fold), RORγt+ Th17, and FOXP3+ regulatory T cells (Tregs). DRA KO colons also exhibited a robust induction of IL-33 (>8-fold). In vivo studies using blocking of IL-33 established that T2 immune dysregulation (alterations in ILC2, Th2, and GATA3+ iTregs) in response to loss of DRA was due to altered epithelial-immune cell crosstalk via IL-33.
Loss of DRA in colonocytes triggers the release of IL-33 to drive a type 2 immune response. These observations emphasize the critical importance of DRA in mucosal immune homeostasis and its implications in the pathogenesis of UC.
Copyright © 2023 The Authors. Published by Elsevier Inc. All rights reserved.

  • Mus musculus (House mouse)
  • Immunology and Microbiology

Mechanisms of CD40-dependent cDC1 licensing beyond costimulation.

In Nature Immunology on 1 November 2022 by Wu, R., Ohara, R. A., et al.

CD40 signaling in classical type 1 dendritic cells (cDC1s) is required for CD8 T cell-mediated tumor rejection, but the underlying mechanisms are incompletely understood. Here, we identified CD40-induced genes in cDC1s, including Cd70, Tnfsf9, Ptgs2 and Bcl2l1, and examined their contributions to anti-tumor immunity. cDC1-specific inactivation of CD70 and COX-2, and global CD27 inactivation, only partially impaired tumor rejection or tumor-specific CD8 T cell expansion. Loss of 4-1BB, alone or in Cd27-/- mice, did not further impair anti-tumor immunity. However, cDC1-specific CD40 inactivation reduced cDC1 mitochondrial transmembrane potential and increased caspase activation in tumor-draining lymph nodes, reducing migratory cDC1 numbers in vivo. Similar impairments occurred during in vitro antigen presentation by Cd40-/- cDC1s to CD8+ T cells, which were reversed by re-expression of Bcl2l1. Thus, CD40 signaling in cDC1s not only induces costimulatory ligands for CD8+ T cells but also induces Bcl2l1 that sustains cDC1 survival during priming of anti-tumor responses.
© 2022. The Author(s), under exclusive licence to Springer Nature America, Inc.

  • FC/FACS
  • Mus musculus (House mouse)
  • Immunology and Microbiology

Monocytic myeloid-derived suppressor cells (M-MDSCs), granulocytic MDSC (G-MDSCs) and regulatory T cells (Tregs) inhibit adaptive anti-tumor immunity and undermine the efficacy of anti-PD-1 therapy. However, the impact of anti-PD-1 treatment on these immunosuppressive cells has not been clearly defined in non-small cell lung cancer (NSCLC). In this retrospective study, 27 advanced NSCLC patients were divided into partial response (PR), stable disease (SD), and progressive disease (PD) groups. The impact of anti-PD-1 therapy on circulating Tregs, G-MDSCs, and M-MDSCs was assessed by flow cytometer. Here, we found that anti-PD-1 treatment boosted circulating Tregs levels, which presented the most remarkable augment during the first two therapeutic cycles, in NSCLC patients. In contrast, anti-PD-1 therapy did not overall change G-MDSCs and M-MDSCs levels. However, the PR group had a higher baseline level of M-MDSCs, which exhibited a significant decrease after the first cycle of anti-PD-1 treatment. Besides, M-MDSCs levels in the PR group were maintained at a low level in the following therapeutic cycles. Consistently, Tregs levels robustly increased in the syngeneic tumor model after anti-mouse PD-1 Ab treatment. Accordingly, M-MDSCs neutralization by anti-mouse ly6c Ab enhanced the anti-tumor efficacy of anti-PD-1 therapy in mice. Finally, the decreased M-MDSCs levels were associated with the enhanced effector CD8+ T cells expansion in the PR group and mice. In conclusion, anti-PD-1 therapy upregulates Tregs levels in NSCLC patients, and the M-MDSC levels are associated with the anti-tumor efficacy of anti-PD-1 treatment. Neutralization of M-MDSCs may be a promising option to augment anti-PD-1 therapy efficacy in NSCLC.
Copyright © 2020 The Authors. Published by Elsevier Inc. All rights reserved.

  • Mus musculus (House mouse)
  • Cancer Research

An Nfil3-Zeb2-Id2 pathway imposes Irf8 enhancer switching during cDC1 development.

In Nature Immunology on 1 September 2019 by Bagadia, P., Huang, X., et al.

Classical type 1 dendritic cells (cDC1s) are required for antiviral and antitumor immunity, which necessitates an understanding of their development. Development of the cDC1 progenitor requires an E-protein-dependent enhancer located 41 kilobases downstream of the transcription start site of the transcription factor Irf8 (+41-kb Irf8 enhancer), but its maturation instead requires the Batf3-dependent +32-kb Irf8 enhancer. To understand this switch, we performed single-cell RNA sequencing of the common dendritic cell progenitor (CDP) and identified a cluster of cells that expressed transcription factors that influence cDC1 development, such as Nfil3, Id2 and Zeb2. Genetic epistasis among these factors revealed that Nfil3 expression is required for the transition from Zeb2hi and Id2lo CDPs to Zeb2lo and Id2hi CDPs, which represent the earliest committed cDC1 progenitors. This genetic circuit blocks E-protein activity to exclude plasmacytoid dendritic cell potential and explains the switch in Irf8 enhancer usage during cDC1 development.

  • FC/FACS
  • Mus musculus (House mouse)
  • Immunology and Microbiology

In a subgroup of patients suffering from progressive multiple sclerosis (MS), which is an inflammation-mediated neurodegenerative disease of the central nervous system (CNS), B cell aggregates were discovered within the meninges. Occurrence of these structures was associated with a more severe disease course and cortical histopathology. We have developed the B cell-dependent MP4-induced experimental autoimmune encephalomyelitis (EAE) as a mouse model to mimic this trait of the human disease. The aim of this study was to determine a potential role of lymphoid tissue inducer (LTi) and TH17 cells in the process of B cell aggregate formation in the MP4 model.
We performed flow cytometry of cerebellar and splenic tissue of MP4-immunized mice in the acute and chronic stage of the disease to analyze the presence of CD3-CD5-CD4+RORγt+ LTi and CD3+CD5+CD4+RORγt+ TH17 cells. Myelin oligodendrocyte glycoprotein (MOG):35-55-induced EAE was used as B cell-independent control model. We further determined the gene expression profile of B cell aggregates using laser capture microdissection, followed by RNA sequencing.
While we were able to detect LTi cells in the embryonic spleen and adult intestine, which served as positive controls, there was no evidence for the existence of such a population in acute or chronic EAE in neither of the two models. Yet, we detected CD3-CD5-CD4-RORγt+ innate lymphoid cells (ILCs) and TH17 cells in the CNS, the latter especially in the chronic stage of MP4-induced EAE. Moreover, we observed a unique gene signature in CNS B cell aggregates compared to draining lymph nodes of MP4-immunized mice and to cerebellum as well as draining lymph nodes of mice with MOG:35-55-induced EAE.
The absence of LTi cells in the cerebellum suggests that other cells might take over the function as an initiator of lymphoid tissue formation in the CNS. Overall, the development of ectopic lymphoid organs is a complex process based on an interplay between several molecules and signals. Here, we propose some potential candidates, which might be involved in the formation of B cell aggregates in the CNS of MP4-immunized mice.

  • Mus musculus (House mouse)
  • Immunology and Microbiology
View this product on CiteAb