Product Citations: 2

Characterization of Siglec-8 Expression on Lavage Cells after Segmental Lung Allergen Challenge.

In International Archives of Allergy and Immunology on 8 June 2018 by Johansson, M. W., Kelly, E. A., et al.

Siglec-8 is present at a high level on human blood eosinophils and low level on blood basophils. Engagement of Siglec-8 on blood eosinophils causes its internalization and results in death. Siglec-8 is a potential therapeutic target in eosinophilic asthma.
The aim of this study was to determine Siglec-8 levels on eosinophils and basophils recruited during lung inflammation.
We analyzed surface Siglec-8 by flow cytometry on cells obtained by bronchoalveolar lavage (BAL) 48 h after segmental lung allergen challenge of human subjects with mild allergic asthma and used confocal microscopy to compare Siglec-8 distribution on BAL and blood eosinophils.
Like their blood counterparts, BAL eosinophils had high unimodal surface Siglec-8, while BAL basophils had lower but detectable surface Siglec-8. BAL macrophages, monocytes, neutrophils, and plasmacytoid dendritic cells did not express surface Siglec-8. Microscopy of freshly isolated blood eosinophils demonstrated homogeneous Siglec-8 distribution over the cell surface. Upon incubation with IL-5, Siglec-8 on the surface of eosinophils became localized in patches both at the nucleopod tip and at the opposite cell pole. BAL eosinophils also had a patchy Siglec-8 distribution.
We conclude that 48 h after segmental allergen challenge, overall levels of Siglec-8 expression on airway eosinophils resemble those on blood eosinophils, but with a patchier distribution, a pattern consistent with activation. Thus, therapeutic targeting of Siglec-8 has the potential to impact blood as well as lung eosinophils, which may be associated with an improved outcome in eosinophilic lung diseases.
© 2018 S. Karger AG, Basel.

Identification and quantification of basophils in the airways of asthmatics following segmental allergen challenge.

In Cytometry. Part A : the Journal of the International Society for Analytical Cytology on 1 July 2014 by Dijkstra, D., Hennig, C., et al.

During asthma attacks, allergens activate sensitized basophils in the lung, thereby aggravating symptoms. Due to the paucity of basophils in bronchial lavage fluid and the lack of specific basophil detection and quantification methods, basophil-directed research in these samples was hampered in the past. This study aimed to establish and validate a flow cytometry-based basophil detection and quantification method for human basophils from bronchoalveolar lavage (BAL) and blood as a prerequisite for a better understanding of their pathogenic contribution and subtyping of asthma phenotypes. BAL and blood leukocytes from seasonal asthmatics were analyzed by flow cytometry. Chipcytometry, a highly sensitive single-cell analysis method, was used to validate the staining panel for basophils. Cell differentials of May-Grünwald-Giemsa-stained cytospins were used to compare basophil percentages. BAL basophils are identifiable as CD123(+) HLA-DR(-) CD3(-) CD14(-) CD19(-) CD20(-) CD56(-) cells in flow cytometrical analysis. Their identity was validated by Chipcytometry. CD203c was highly expressed by BAL basophils, whereas it was expressed at variable levels on blood basophils. The two quantification methods correlated, although more basophils were detected by flow cytometry. Furthermore, the increase in basophil percentages in the lung correlated with the decrease in the basophil percentages in the blood after allergen challenge. We here validated a reliable basophil quantification method, which is independent of the cell's activation and degranulation state. The results obtained with this method indicate that basophils are directly recruited from the blood circulation to the airway lumen.
© 2014 International Society for Advancement of Cytometry.

View this product on CiteAb